Spaces:
Sleeping
Sleeping
File size: 55,032 Bytes
3db2fae bb68eb6 98aae70 5d3ebd9 98aae70 3db2fae 479ced5 3db2fae 479ced5 3db2fae 479ced5 3db2fae 479ced5 3db2fae 98aae70 3db2fae 98aae70 3db2fae 98aae70 3db2fae 479ced5 3db2fae cbcf1e4 3db2fae ca54b04 5d3ebd9 ca54b04 3db2fae ca54b04 98aae70 5d3ebd9 98aae70 3db2fae 5a08ed8 3db2fae 5a08ed8 479ced5 cbcf1e4 3db2fae 479ced5 bb68eb6 479ced5 bb68eb6 479ced5 bb68eb6 145c7bc 479ced5 5d3ebd9 479ced5 5d3ebd9 479ced5 5d3ebd9 479ced5 5d3ebd9 479ced5 145c7bc bb68eb6 479ced5 bb68eb6 145c7bc bb68eb6 145c7bc 5d3ebd9 145c7bc bb68eb6 145c7bc bb68eb6 145c7bc 5d3ebd9 145c7bc bb68eb6 c62bdf5 bb68eb6 bf666f7 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 bf666f7 c62bdf5 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 c62bdf5 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 f102d2f 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 f102d2f 5d3ebd9 bb68eb6 f102d2f bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 f102d2f bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 5d3ebd9 bb68eb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
# Set environment variables IMMEDIATELY to prevent root filesystem access
# This must happen before any other imports or operations
import os
import tempfile
import json
from datetime import datetime
# Get a writable temp directory first
try:
TEMP_DIR = os.path.join(tempfile.gettempdir(), "docling_temp")
os.makedirs(TEMP_DIR, exist_ok=True)
except Exception:
try:
TEMP_DIR = "/tmp/docling_temp"
os.makedirs(TEMP_DIR, exist_ok=True)
except Exception:
TEMP_DIR = os.getcwd()
# Set all environment variables that libraries might use
os.environ.update({
# Streamlit configuration
'STREAMLIT_SERVER_FILE_WATCHER_TYPE': 'none',
'STREAMLIT_SERVER_HEADLESS': 'true',
'STREAMLIT_BROWSER_GATHER_USAGE_STATS': 'false',
'STREAMLIT_SERVER_ENABLE_CORS': 'false',
'STREAMLIT_SERVER_ENABLE_XSRF_PROTECTION': 'false',
# EasyOCR configuration
'EASYOCR_MODULE_PATH': os.path.join(TEMP_DIR, 'easyocr_models'),
'HOME': TEMP_DIR,
'USERPROFILE': TEMP_DIR,
'XDG_CACHE_HOME': os.path.join(TEMP_DIR, 'cache'),
'XDG_CONFIG_HOME': os.path.join(TEMP_DIR, 'config'),
'XDG_DATA_HOME': os.path.join(TEMP_DIR, 'data'),
# Hugging Face Hub configuration - CRITICAL for preventing /.cache access
'HF_HOME': os.path.join(TEMP_DIR, 'huggingface'),
'HF_CACHE_HOME': os.path.join(TEMP_DIR, 'huggingface_cache'),
'HF_HUB_CACHE': os.path.join(TEMP_DIR, 'huggingface_cache'),
'TRANSFORMERS_CACHE': os.path.join(TEMP_DIR, 'transformers_cache'),
'HF_DATASETS_CACHE': os.path.join(TEMP_DIR, 'datasets_cache'),
'DIFFUSERS_CACHE': os.path.join(TEMP_DIR, 'diffusers_cache'),
'ACCELERATE_CACHE': os.path.join(TEMP_DIR, 'accelerate_cache'),
# Additional Hugging Face specific variables
'HF_HUB_DISABLE_TELEMETRY': '1',
'HF_HUB_DISABLE_IMPLICIT_TOKEN': '1',
'HF_HUB_OFFLINE': '0',
# Other ML libraries
'TORCH_HOME': os.path.join(TEMP_DIR, 'torch'),
'TENSORFLOW_HOME': os.path.join(TEMP_DIR, 'tensorflow'),
'KERAS_HOME': os.path.join(TEMP_DIR, 'keras'),
'MLFLOW_TRACKING_URI': f'file:{os.path.join(TEMP_DIR, "mlruns")}',
# Additional cache directories
'CACHE_DIR': os.path.join(TEMP_DIR, 'cache'),
'MODEL_CACHE_DIR': os.path.join(TEMP_DIR, 'models'),
# Additional environment variables to prevent root access
'PYTHONPATH': TEMP_DIR,
'TMPDIR': TEMP_DIR,
'TEMP': TEMP_DIR,
'TMP': TEMP_DIR,
'CACHE': os.path.join(TEMP_DIR, 'cache'),
'MODELS': os.path.join(TEMP_DIR, 'models'),
'DATA': os.path.join(TEMP_DIR, 'data'),
'CONFIG': os.path.join(TEMP_DIR, 'config'),
})
# Create all necessary directories
directories_to_create = [
os.environ['EASYOCR_MODULE_PATH'],
os.environ['XDG_CACHE_HOME'],
os.environ['XDG_CONFIG_HOME'],
os.environ['XDG_DATA_HOME'],
os.environ['HF_HOME'],
os.environ['HF_CACHE_HOME'],
os.environ['TRANSFORMERS_CACHE'],
os.environ['HF_DATASETS_CACHE'],
os.environ['TORCH_HOME'],
os.environ['TENSORFLOW_HOME'],
os.environ['KERAS_HOME'],
os.environ['CACHE_DIR'],
os.environ['MODEL_CACHE_DIR'],
os.environ['CACHE'],
os.environ['MODELS'],
os.environ['DATA'],
os.environ['CONFIG'],
os.environ['HF_HUB_CACHE'],
os.environ['DIFFUSERS_CACHE'],
os.environ['ACCELERATE_CACHE'],
]
for directory in directories_to_create:
try:
# Create directory and all parent directories
os.makedirs(directory, mode=0o777, exist_ok=True)
# Ensure the directory has write permissions
os.chmod(directory, 0o777)
except Exception as e:
print(f"Warning: Could not create directory {directory}: {e}")
# Now import the rest of the modules
import streamlit as st
import logging
import shutil
from processing.document_processor import DocumentProcessor
from processing.sections import ReasoningSectionExtractor
from utils.logging_utils import get_log_handler
from utils.cost_tracker import cost_tracker
from dotenv import load_dotenv
import sys
import difflib
import time
# Configure logging early to avoid issues
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)s %(name)s: %(message)s",
stream=sys.stdout,
force=True
)
# Load environment variables from .env
load_dotenv()
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
AZURE_OPENAI_VERSION = os.getenv("AZURE_OPENAI_VERSION")
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
# Log startup information
logging.info("=" * 50)
logging.info("Docling Streamlit App Starting")
logging.info(f"Temp directory: {TEMP_DIR}")
logging.info(f"EasyOCR model directory: {os.environ.get('EASYOCR_MODULE_PATH', 'NOT_SET')}")
logging.info(f"Hugging Face cache: {os.environ.get('HF_CACHE_HOME', 'NOT_SET')}")
logging.info(f"Current working directory: {os.getcwd()}")
logging.info(f"Python version: {sys.version}")
logging.info("=" * 50)
def cleanup_temp_files():
"""Clean up temporary files in the temp directory."""
try:
if os.path.exists(TEMP_DIR):
for filename in os.listdir(TEMP_DIR):
file_path = os.path.join(TEMP_DIR, filename)
if os.path.isfile(file_path):
try:
os.remove(file_path)
logging.info(f"Removed temp file: {filename}")
except PermissionError as e:
logging.warning(f"Permission error removing {filename}: {e}")
except Exception as e:
logging.warning(f"Error removing {filename}: {e}")
logging.info(f"Cleaned up temporary files in {TEMP_DIR}")
else:
logging.info(f"Temp directory {TEMP_DIR} does not exist")
except PermissionError as e:
logging.warning(f"Permission error accessing temp directory {TEMP_DIR}: {e}")
except Exception as e:
logging.warning(f"Error cleaning up temp files: {e}")
def clear_all_data():
"""Clear all temporary files and session state data."""
try:
# Clean up temp files
cleanup_temp_files()
# Clear session state
if "processed_results" in st.session_state:
del st.session_state.processed_results
if "logs" in st.session_state:
del st.session_state.logs
if "original_structures" in st.session_state:
del st.session_state.original_structures
if "show_original" in st.session_state:
del st.session_state.show_original
if "show_processed" in st.session_state:
del st.session_state.show_processed
if "temp_cleaned" in st.session_state:
del st.session_state.temp_cleaned
if "last_cleanup_time" in st.session_state:
del st.session_state.last_cleanup_time
logging.info("Cleared all session state and temporary files")
return True
except Exception as e:
logging.error(f"Error clearing all data: {e}")
return False
def get_temp_files_info():
"""Get information about temporary files (count and total size)."""
try:
if not os.path.exists(TEMP_DIR):
return 0, 0
files = os.listdir(TEMP_DIR)
total_size = 0
file_details = []
for filename in files:
try:
file_path = os.path.join(TEMP_DIR, filename)
if os.path.isfile(file_path):
file_size = os.path.getsize(file_path)
total_size += file_size
file_details.append({
'name': filename,
'size': file_size,
'type': 'file'
})
elif os.path.isdir(file_path):
file_details.append({
'name': filename,
'size': 0,
'type': 'directory'
})
except (PermissionError, OSError) as e:
logging.warning(f"Error accessing file {filename}: {e}")
file_details.append({
'name': filename,
'size': 0,
'type': 'error'
})
continue
# Log detailed information for debugging
if file_details:
logging.info(f"Temp directory contents ({TEMP_DIR}):")
for detail in file_details:
logging.info(f" - {detail['name']} ({detail['type']}): {detail['size']} bytes")
return len(files), total_size
except PermissionError as e:
logging.warning(f"Permission error accessing temp directory {TEMP_DIR}: {e}")
return 0, 0
except Exception as e:
logging.warning(f"Error getting temp files info: {e}")
return 0, 0
def format_file_size(size_bytes):
"""Format file size in human readable format."""
if size_bytes == 0:
return "0 B"
size_names = ["B", "KB", "MB", "GB"]
i = 0
while size_bytes >= 1024 and i < len(size_names) - 1:
size_bytes /= 1024.0
i += 1
return f"{size_bytes:.1f} {size_names[i]}"
def save_uploaded_file(uploaded_file, filename):
"""Save uploaded file to temp directory and return the path."""
temp_path = os.path.join(TEMP_DIR, f"temp_{filename}")
try:
uploaded_file.seek(0) # Reset file pointer to beginning
file_bytes = uploaded_file.read()
with open(temp_path, "wb") as f:
f.write(file_bytes)
logging.info(f"Saved uploaded file to {temp_path}")
return temp_path
except PermissionError as e:
logging.error(f"Permission error saving uploaded file to {temp_path}: {e}")
raise PermissionError(f"Cannot save file due to permission restrictions. Please try clearing data or contact support.")
except Exception as e:
logging.error(f"Error saving uploaded file: {e}")
raise
# Configure page layout to use wide mode
st.set_page_config(
page_title="Medical Document Parser & Redactor",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed"
)
# Add custom CSS for better styling
st.markdown("""
<style>
/* Custom styling for text areas */
.stTextArea textarea {
font-family: 'Courier New', monospace !important;
font-size: 12px !important;
line-height: 1.4 !important;
border: 2px solid #e0e0e0 !important;
border-radius: 8px !important;
}
/* Hover effect for text areas */
.stTextArea textarea:hover {
border-color: #1f77b4 !important;
}
/* Custom styling for download buttons */
.stDownloadButton > button {
border-radius: 8px !important;
font-weight: 600 !important;
}
/* Custom styling for the comparison section */
.comparison-container {
background-color: #f8f9fa;
padding: 20px;
border-radius: 10px;
border: 1px solid #e9ecef;
}
</style>
""", unsafe_allow_html=True)
# Configure root logger only once (avoid duplicate handlers on reruns)
if len(logging.getLogger().handlers) == 0:
logging.getLogger().setLevel(logging.INFO)
# (We will attach custom handlers during processing as needed)
# Title and description
st.title("Medical Document Parser & Redactor")
st.write("""
Upload PDF medical documents to parse their content using **Docling** (structure-aware parser)
and automatically **redact specific sections** (e.g., initial and final medication lists).
Use the buttons below to view the original structure or process with redaction.
**π‘ Tip:** This is a Hugging Face Space with limited storage. Use the "Clear All Data" button to remove temporary files when you're done processing documents.
""")
# Add clear all data button at the top
if st.button("π§Ή Clear All Data", type="secondary", help="Remove all temporary files and reset the application"):
if clear_all_data():
st.success("β
All data cleared successfully! The application has been reset.")
cost_tracker.reset_session() # Reset cost tracking when clearing data
st.rerun()
else:
st.error("β Error clearing data. Please try again.")
# File uploader (accept multiple PDF files)
uploaded_files = st.file_uploader("Upload PDF medical documents", type=["pdf"], accept_multiple_files=True)
# Clean up temp files on app start (but keep the directory)
if "temp_cleaned" not in st.session_state:
cleanup_temp_files()
st.session_state.temp_cleaned = True
# Initialize session state storage for results and logs
if "processed_results" not in st.session_state:
st.session_state.processed_results = {} # {filename: {"structured_json": ..., "redacted_md": ..., "redacted_json": ...}}
if "logs" not in st.session_state:
st.session_state.logs = {} # {filename: log_text}
if "original_structures" not in st.session_state:
st.session_state.original_structures = {} # {filename: structured_json}
# Show temp directory status and cleanup button
temp_file_count, total_size = get_temp_files_info()
# Automatic cleanup: if temp files are too old or too large, clean them up
if "last_cleanup_time" not in st.session_state:
st.session_state.last_cleanup_time = time.time()
# Check if we should do automatic cleanup (every 30 minutes or if files are too large)
current_time = time.time()
time_since_cleanup = current_time - st.session_state.last_cleanup_time
if (time_since_cleanup > 1800 or # 30 minutes
total_size > 100 * 1024 * 1024): # 100MB
if temp_file_count > 0:
cleanup_temp_files()
st.session_state.last_cleanup_time = current_time
st.info("π§Ή Automatic cleanup: Removed old temporary files")
# Recalculate after cleanup
temp_file_count, total_size = get_temp_files_info()
# Create a row with temp file status and delete button
col1, col2 = st.columns([3, 1])
with col1:
if temp_file_count > 0:
st.caption(f"π {temp_file_count} temporary file(s) - Total size: {format_file_size(total_size)}")
# Show warning if total size is large
if total_size > 50 * 1024 * 1024: # 50MB
st.warning("β οΈ Large temporary files detected. Consider clearing data to free up space.")
# Debug: Show temp files (expandable)
with st.expander("π Debug: View temporary files"):
try:
if os.path.exists(TEMP_DIR):
files = os.listdir(TEMP_DIR)
if files:
st.write("**Temporary files in directory:**")
for filename in files:
file_path = os.path.join(TEMP_DIR, filename)
try:
if os.path.isfile(file_path):
size = os.path.getsize(file_path)
st.write(f"π {filename} ({format_file_size(size)})")
elif os.path.isdir(file_path):
st.write(f"π {filename} (directory)")
else:
st.write(f"β {filename} (unknown)")
except Exception as e:
st.write(f"β {filename} (error: {e})")
else:
st.write("No files found in temp directory")
else:
st.write("Temp directory does not exist")
except Exception as e:
st.write(f"Error accessing temp directory: {e}")
else:
st.caption("π No temporary files")
with col2:
if temp_file_count > 0:
if st.button("ποΈ Delete Temp Files", type="secondary", help="Remove all temporary files from the server"):
try:
cleanup_temp_files()
st.success(f"β
Successfully deleted {temp_file_count} temporary file(s)")
st.rerun() # Refresh the page to update the file count
except Exception as e:
st.error(f"β Error deleting temporary files: {e}")
else:
st.caption("No files to delete")
if uploaded_files:
# UI to select which file to work with (if multiple files uploaded)
file_names = [f.name for f in uploaded_files]
selected_file = st.selectbox("Select a file to work with", options=file_names)
if selected_file:
# Find the selected uploaded file
uploaded_file = next(f for f in uploaded_files if f.name == selected_file)
# Create buttons for different actions
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
if st.button("π Show Original", type="primary"):
# Process the document to get original structure (without redaction)
if selected_file not in st.session_state.original_structures:
# Save uploaded file to a temporary location
temp_path = save_uploaded_file(uploaded_file, selected_file)
# Create a DocumentProcessor without section extraction (for original structure)
processor = DocumentProcessor(section_extractor=None)
# Process the document to get original structure
result = processor.process(temp_path)
st.session_state.original_structures[selected_file] = result.structured_json
# Also store the original markdown for comparison
st.session_state.original_structures[f"{selected_file}_markdown"] = result.structured_markdown
# Display the original structure
st.session_state.show_original = True
st.session_state.show_processed = False
with col2:
if st.button("π Process with Redaction"):
# Process the document with redaction
if selected_file not in st.session_state.processed_results:
# Save uploaded file to a temporary location
temp_path = save_uploaded_file(uploaded_file, selected_file)
# Ensure the deployment name is in the cost tracker
if AZURE_OPENAI_DEPLOYMENT and AZURE_OPENAI_DEPLOYMENT not in cost_tracker.get_available_models():
model_type = cost_tracker.guess_model_type(AZURE_OPENAI_DEPLOYMENT)
cost_tracker.add_deployment_pricing(AZURE_OPENAI_DEPLOYMENT, model_type)
# Use the new processing function
from processing.document_processor import process_document_with_redaction
# Attach an in-memory log handler to capture logs for this file
log_handler, log_buffer = get_log_handler()
root_logger = logging.getLogger()
root_logger.addHandler(log_handler)
try:
# Process the document using the new function
processing_result = process_document_with_redaction(
file_path=temp_path,
endpoint=AZURE_OPENAI_ENDPOINT,
api_key=AZURE_OPENAI_KEY,
api_version=AZURE_OPENAI_VERSION,
deployment=AZURE_OPENAI_DEPLOYMENT,
)
# Save results in session state (maintaining compatibility with existing UI)
st.session_state.processed_results[selected_file] = {
"structured_json": processing_result.original_document_json,
"redacted_md": processing_result.redacted_document_md,
"redacted_json": processing_result.redacted_document_json, # Now this is actually redacted!
"original_markdown": processing_result.original_document_md,
"processing_result": processing_result # Store the new result
}
finally:
# Remove handler and stop capturing logs
root_logger.removeHandler(log_handler)
# Combine log records into a single text
log_text = "\n".join(log_buffer)
st.session_state.logs[selected_file] = log_text
st.session_state.show_original = False
st.session_state.show_processed = True
with col3:
if st.button("π Switch View"):
# Toggle between views
if st.session_state.get("show_original", False):
st.session_state.show_original = False
st.session_state.show_processed = True
else:
st.session_state.show_original = True
st.session_state.show_processed = False
with col4:
if st.button("π Show Original JSON", type="secondary"):
# Process the document to get original structure (without redaction)
if selected_file not in st.session_state.original_structures:
# Save uploaded file to a temporary location
temp_path = save_uploaded_file(uploaded_file, selected_file)
# Create a DocumentProcessor without section extraction (for original structure)
processor = DocumentProcessor(section_extractor=None)
# Process the document to get original structure
result = processor.process(temp_path)
st.session_state.original_structures[selected_file] = result.structured_json
# Store the original markdown for comparison
st.session_state.original_structures[f"{selected_file}_markdown"] = result.structured_markdown
# Store the original YAML for comparison
st.session_state.original_structures[f"{selected_file}_yaml"] = result.structured_yaml
# Display the original JSON structure
st.session_state.show_original = True
st.session_state.show_processed = False
st.session_state.show_json = True
st.session_state.show_yaml = False
with col5:
if st.button("π Show Original YAML", type="secondary"):
# Process the document to get original structure (without redaction)
if selected_file not in st.session_state.original_structures:
# Save uploaded file to a temporary location
temp_path = save_uploaded_file(uploaded_file, selected_file)
# Create a DocumentProcessor without section extraction (for original structure)
processor = DocumentProcessor(section_extractor=None)
# Process the document to get original structure
result = processor.process(temp_path)
st.session_state.original_structures[selected_file] = result.structured_json
# Store the original markdown for comparison
st.session_state.original_structures[f"{selected_file}_markdown"] = result.structured_markdown
# Store the original YAML for comparison
st.session_state.original_structures[f"{selected_file}_yaml"] = result.structured_yaml
# Display the original YAML structure
st.session_state.show_original = True
st.session_state.show_processed = False
st.session_state.show_json = False
st.session_state.show_yaml = True
# Show current view status
if st.session_state.get("show_original", False):
st.info("π Currently viewing: **Original Document Structure**")
elif st.session_state.get("show_processed", False):
st.success("π Currently viewing: **Processed Document with Redaction**")
else:
st.info("βΉοΈ Select an action above to view document content")
# Display results based on button clicked
if st.session_state.get("show_original", False):
st.markdown("---")
# Determine what to show based on button clicked
show_json = st.session_state.get("show_json", False)
show_yaml = st.session_state.get("show_yaml", False)
if show_json:
st.subheader(f"Original Document Structure (JSON) - {selected_file}")
elif show_yaml:
st.subheader(f"Original Document Structure (YAML) - {selected_file}")
else:
st.subheader(f"Original Document Structure (Markdown) - {selected_file}")
# Get the original structure
original_json = st.session_state.original_structures[selected_file]
original_markdown = st.session_state.original_structures.get(f"{selected_file}_markdown", "")
original_yaml = st.session_state.original_structures.get(f"{selected_file}_yaml", "")
# Display PDF viewer and content side by side
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("π Original PDF")
# Reset file pointer to beginning
uploaded_file.seek(0)
# Display PDF using base64 encoding for inline display
import base64
pdf_bytes = uploaded_file.getvalue()
b64_pdf = base64.b64encode(pdf_bytes).decode()
pdf_display = f'<iframe src="data:application/pdf;base64,{b64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
with col2:
if show_json:
st.subheader("π Original Document (JSON)")
st.caption("Docling-generated JSON structure from the PDF")
# Use a text area for better readability and scrolling
st.text_area(
label="Original JSON content",
value=json.dumps(original_json, indent=2, ensure_ascii=False),
height=600,
key="original_json_display",
label_visibility="collapsed"
)
elif show_yaml:
st.subheader("π Original Document (YAML)")
st.caption("Docling-generated YAML structure from the PDF")
# Use a text area for better readability and scrolling
st.text_area(
label="Original YAML content",
value=original_yaml,
height=600,
key="original_yaml_display",
label_visibility="collapsed"
)
else:
st.subheader("π Original Document (Markdown)")
st.caption("Docling-generated markdown from the PDF")
# Use a text area for better readability and scrolling
st.text_area(
label="Original markdown content",
value=original_markdown,
height=600,
key="original_markdown_display",
label_visibility="collapsed"
)
# Add download buttons for the original content
st.markdown("---")
col1, col2, col3 = st.columns(3)
with col1:
if show_json:
st.download_button(
label="π₯ Download Original JSON",
data=json.dumps(original_json, indent=2, ensure_ascii=False),
file_name=f"{selected_file}_original.json",
mime="application/json"
)
elif show_yaml:
st.download_button(
label="π₯ Download Original YAML",
data=original_yaml,
file_name=f"{selected_file}_original.yaml",
mime="text/yaml"
)
else:
st.download_button(
label="π₯ Download Original Markdown",
data=original_markdown,
file_name=f"{selected_file}_original.md",
mime="text/markdown"
)
with col2:
if show_json or show_yaml:
st.subheader("π Document Structure")
st.json(original_json)
else:
st.subheader("π JSON Structure")
st.json(original_json)
with col3:
if show_json or show_yaml:
# Show format information
st.subheader("π Format Info")
if show_json:
st.info("**JSON Format**: Structured data representation with key-value pairs")
st.write("**Use case**: API integration, data processing, programmatic access")
elif show_yaml:
st.info("**YAML Format**: Human-readable data serialization")
st.write("**Use case**: Configuration files, documentation, easy reading")
else:
st.subheader("π Markdown Info")
st.info("**Markdown Format**: Formatted text with headers, lists, and styling")
st.write("**Use case**: Documentation, readable output, web display")
elif st.session_state.get("show_processed", False):
st.markdown("---")
st.subheader(f"Processed Document - {selected_file}")
# Retrieve stored results
data = st.session_state.processed_results[selected_file]
structured_json = data["structured_json"]
redacted_md = data["redacted_md"]
redacted_json = data["redacted_json"]
original_md = data["original_markdown"]
# Show processing summary
original_texts = structured_json.get("texts", [])
redacted_texts = redacted_json.get("texts", [])
removed_count = len(original_texts) - len(redacted_texts)
if removed_count > 0:
st.success(f"β
Successfully removed {removed_count} text elements containing medication information")
else:
st.info("βΉοΈ No medication sections were identified for removal")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["π Side-by-Side Comparison", "π JSON Structure", "π Processing Details"])
with tab1:
st.subheader("Original vs Redacted Content")
st.caption("Compare the original document content with the redacted version")
# Get the actual removed indices from the processing result
actual_removed_indices = []
if "processing_result" in st.session_state.processed_results[selected_file]:
processing_result = st.session_state.processed_results[selected_file]["processing_result"]
actual_removed_indices = processing_result.removed_indices
# Create a more intelligent side-by-side comparison based on JSON structure
col1, col2 = st.columns(2)
with col1:
st.markdown("**π Original Document**")
# Display original content with removed sections highlighted
for i, text_elem in enumerate(original_texts):
text_content = text_elem.get("text", "")
label = text_elem.get("label", "")
# Check if this element was removed
is_removed = i in actual_removed_indices
if is_removed:
# Highlight removed content in red
st.markdown(f"""
<div style="background-color: #ffebee; color: #c62828; padding: 8px; margin: 4px 0; border-left: 4px solid #f44336; border-radius: 4px;">
<strong>Text {i} ({label}) - REMOVED:</strong><br>
{text_content}
</div>
""", unsafe_allow_html=True)
else:
# Show normal content
content_preview = text_content[:150] + "..." if len(text_content) > 150 else text_content
st.markdown(f"""
<div style="padding: 4px; margin: 2px 0; border-radius: 4px;">
<strong>Text {i} ({label}) - {len(text_content)} chars:</strong><br>
<code style="background-color: #f5f5f5; padding: 2px; border-radius: 2px;">{content_preview}</code>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("**π Redacted Document**")
# Display redacted content (only non-removed elements)
redacted_index = 0
for i, text_elem in enumerate(original_texts):
text_content = text_elem.get("text", "")
label = text_elem.get("label", "")
# Check if this element was removed
is_removed = i in actual_removed_indices
if is_removed:
# Show placeholder for removed content
st.markdown(f"""
<div style="background-color: #ffebee; color: #c62828; padding: 8px; margin: 4px 0; border-left: 4px solid #f44336; border-radius: 4px; font-style: italic; opacity: 0.7;">
<strong>Text {i} ({label}) - REMOVED</strong><br>
[Content removed by redaction]
</div>
""", unsafe_allow_html=True)
else:
# Show the actual content from redacted texts
if redacted_index < len(redacted_texts):
redacted_content = redacted_texts[redacted_index].get("text", "")
content_preview = redacted_content[:150] + "..." if len(redacted_content) > 150 else redacted_content
st.markdown(f"""
<div style="padding: 4px; margin: 2px 0; border-radius: 4px;">
<strong>Text {i} ({label}) - {len(redacted_content)} chars:</strong><br>
<code style="background-color: #f5f5f5; padding: 2px; border-radius: 2px;">{content_preview}</code>
</div>
""", unsafe_allow_html=True)
redacted_index += 1
else:
st.markdown(f"""
<div style="padding: 4px; margin: 2px 0; border-radius: 4px; background-color: #f5f5f5;">
<strong>Text {i} ({label}):</strong><br>
[Content preserved]
</div>
""", unsafe_allow_html=True)
# Add legend
st.markdown("---")
col1, col2 = st.columns(2)
with col1:
st.markdown("**π¨ Comparison Legend:**")
st.markdown("π΄ **Red background** = Removed content")
st.markdown("βͺ **White background** = Preserved content")
st.markdown("π **Italic text** = Placeholder for removed content")
with col2:
st.markdown("**π‘ How to read:**")
st.markdown("Left panel shows original with removed sections highlighted")
st.markdown("Right panel shows redacted version with placeholders")
st.markdown("Compare corresponding text indices to see changes")
# Add debug information to help identify missing content
with st.expander("π Debug: Content Analysis"):
st.write("**Searching for table content...**")
# Search for table-related content in original texts
table_elements = []
for i, text_elem in enumerate(original_texts):
text_content = text_elem.get("text", "")
label = text_elem.get("label", "")
if "Bespreking" in text_content or "|" in text_content or "table" in label.lower():
table_elements.append({
"index": i,
"label": label,
"content": text_content[:200] + "..." if len(text_content) > 200 else text_content,
"is_removed": i in actual_removed_indices
})
if table_elements:
st.write(f"**Found {len(table_elements)} table-related elements:**")
for elem in table_elements:
status = "π΄ REMOVED" if elem["is_removed"] else "β
PRESERVED"
st.write(f"**Text {elem['index']} ({elem['label']}) - {status}:**")
st.write(f"`{elem['content']}`")
st.write("---")
else:
st.write("**No table-related content found in original texts**")
# Also check redacted texts
st.write("**Table content in redacted texts:**")
table_elements_redacted = []
for i, text_elem in enumerate(redacted_texts):
text_content = text_elem.get("text", "")
label = text_elem.get("label", "")
if "Bespreking" in text_content or "|" in text_content or "table" in label.lower():
table_elements_redacted.append({
"index": i,
"label": label,
"content": text_content[:200] + "..." if len(text_content) > 200 else text_content
})
if table_elements_redacted:
st.write(f"**Found {len(table_elements_redacted)} table-related elements in redacted content:**")
for elem in table_elements_redacted:
st.write(f"**Text {elem['index']} ({elem['label']}):**")
st.write(f"`{elem['content']}`")
st.write("---")
else:
st.write("**No table-related content found in redacted texts**")
# Add download buttons for redacted content
st.markdown("---")
st.subheader("π₯ Download Redacted Content")
col1, col2, col3 = st.columns(3)
with col1:
# Download redacted markdown
st.download_button(
label="π Download Redacted Markdown",
data=redacted_md,
file_name=f"{selected_file}_redacted.md",
mime="text/markdown",
help="Download the redacted document as Markdown format"
)
with col2:
# Generate and download redacted PDF
pdf_generated = False
pdf_bytes = None
if st.button("π Generate Redacted PDF", help="Generate a PDF version of the redacted document"):
with st.spinner("Generating redacted PDF..."):
try:
# Create a DocumentProcessor to access PDF generation
temp_path = save_uploaded_file(uploaded_file, selected_file)
processor = DocumentProcessor(section_extractor=None)
# Generate PDF path
base_name = os.path.splitext(selected_file)[0]
pdf_path = os.path.join(TEMP_DIR, f"{base_name}_redacted.pdf")
# Generate the PDF
success = processor.generate_redacted_pdf(redacted_json, pdf_path)
if success:
# Read the generated PDF and store for download
with open(pdf_path, "rb") as pdf_file:
pdf_bytes = pdf_file.read()
pdf_generated = True
st.success("β
PDF generated successfully!")
else:
st.error("β Failed to generate PDF. Check logs for details.")
except Exception as e:
st.error(f"β Error generating PDF: {e}")
st.info("π‘ Make sure reportlab is installed: `pip install reportlab`")
# Show download button if PDF was generated
if pdf_generated and pdf_bytes:
st.download_button(
label="π₯ Download Redacted PDF",
data=pdf_bytes,
file_name=f"{os.path.splitext(selected_file)[0]}_redacted.pdf",
mime="application/pdf",
help="Download the redacted document as PDF"
)
# Show debug information about what's in the PDF
with st.expander("π Debug: PDF Content Analysis"):
st.write("**Content that will be included in the PDF:**")
texts_in_pdf = redacted_json.get("texts", [])
st.write(f"Total text elements: {len(texts_in_pdf)}")
for i, text_elem in enumerate(texts_in_pdf):
text_content = text_elem.get("text", "")[:100] + "..." if len(text_elem.get("text", "")) > 100 else text_elem.get("text", "")
label = text_elem.get("label", "")
st.write(f"**Text {i} ({label}):** {text_content}")
elif not pdf_generated:
st.info("π‘ Click 'Generate Redacted PDF' to create a PDF version")
with col3:
# Download redacted JSON structure
st.download_button(
label="π§ Download Redacted JSON",
data=json.dumps(redacted_json, indent=2, ensure_ascii=False),
file_name=f"{selected_file}_redacted.json",
mime="application/json",
help="Download the redacted document structure as JSON"
)
with tab2:
st.subheader("Document Structure Analysis")
# Show JSON structure comparison
col1, col2 = st.columns(2)
with col1:
st.markdown("**π Original Structure (JSON)**")
st.json(structured_json)
with col2:
st.markdown("**π Redacted Structure (JSON)**")
st.json(redacted_json)
with tab3:
st.subheader("Processing Details")
# Show cost analysis for this processing session
st.subheader("π° Cost Analysis")
# Get cost data from the processing result
if "processing_result" in st.session_state.processed_results[selected_file]:
processing_result = st.session_state.processed_results[selected_file]["processing_result"]
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Cost", f"${processing_result.cost:.4f}")
with col2:
st.metric("Input Tokens", f"{processing_result.input_tokens:,}")
with col3:
st.metric("Output Tokens", f"{processing_result.output_tokens:,}")
# Add download button for cost report
cost_report = {
"timestamp": datetime.now().isoformat(),
"total_cost": processing_result.cost,
"input_tokens": processing_result.input_tokens,
"output_tokens": processing_result.output_tokens,
"total_tokens": processing_result.input_tokens + processing_result.output_tokens,
"document_processed": selected_file,
"model_used": AZURE_OPENAI_DEPLOYMENT
}
st.download_button(
label="π₯ Download Cost Report (JSON)",
data=json.dumps(cost_report, indent=2),
file_name=f"cost_report_{selected_file}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
# Show model information
model_info = cost_tracker.get_model_info(AZURE_OPENAI_DEPLOYMENT)
if model_info:
st.subheader("Model Information")
st.write(f"**Model:** {model_info.description}")
st.write(f"**Input cost:** ${model_info.input_cost_per_1k_tokens:.4f}/1K tokens")
st.write(f"**Output cost:** ${model_info.output_cost_per_1k_tokens:.4f}/1K tokens")
# Calculate cost breakdown
input_cost = (processing_result.input_tokens / 1000) * model_info.input_cost_per_1k_tokens
output_cost = (processing_result.output_tokens / 1000) * model_info.output_cost_per_1k_tokens
st.write(f"**Cost breakdown:** Input: ${input_cost:.4f}, Output: ${output_cost:.4f}")
else:
# Fallback to old cost summary method
cost_summary = cost_tracker.get_session_summary()
if cost_summary["usage_count"] > 0:
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Cost", f"${cost_summary['total_cost']:.4f}")
with col2:
st.metric("Total Tokens", f"{cost_summary['total_tokens']:,}")
with col3:
st.metric("API Calls", cost_summary["usage_count"])
# Add download button for cost report
cost_report = {
"timestamp": datetime.now().isoformat(),
"total_cost": cost_summary["total_cost"],
"total_tokens": cost_summary["total_tokens"],
"api_calls": cost_summary["usage_count"],
"model_breakdown": cost_summary["model_breakdown"],
"document_processed": selected_file
}
st.download_button(
label="π₯ Download Cost Report (JSON)",
data=json.dumps(cost_report, indent=2),
file_name=f"cost_report_{selected_file}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
# Show detailed model breakdown
if cost_summary["model_breakdown"]:
st.subheader("Model Usage Breakdown")
for model, stats in cost_summary["model_breakdown"].items():
model_info = cost_tracker.get_model_info(model)
model_display_name = model_info.description if model_info else model
with st.expander(f"{model_display_name} - ${stats['cost']:.4f}"):
col1, col2 = st.columns(2)
with col1:
st.write(f"**Input tokens:** {stats['input_tokens']:,}")
st.write(f"**Output tokens:** {stats['output_tokens']:,}")
with col2:
st.write(f"**Total tokens:** {stats['total_tokens']:,}")
st.write(f"**API calls:** {stats['usage_count']}")
# Show cost breakdown
if model_info:
input_cost = (stats['input_tokens'] / 1000) * model_info.input_cost_per_1k_tokens
output_cost = (stats['output_tokens'] / 1000) * model_info.output_cost_per_1k_tokens
st.write(f"**Cost breakdown:** Input: ${input_cost:.4f}, Output: ${output_cost:.4f}")
else:
st.info("No API calls recorded for this session")
# Show what was removed
if removed_count > 0:
st.info(f"**Removed {removed_count} text elements from the document structure.**")
# Show the removed text elements - use the actual indices from the processing result
st.subheader("Removed Text Elements:")
# Get the actual indices that were removed from the processing result
if "processing_result" in st.session_state.processed_results[selected_file]:
# Get the actual removed indices from the LLM response
processing_result = st.session_state.processed_results[selected_file]["processing_result"]
actual_removed_indices = processing_result.removed_indices
if actual_removed_indices:
st.info(f"**Elements removed by LLM analysis ({len(actual_removed_indices)} elements):**")
for idx in actual_removed_indices:
if idx < len(original_texts):
text_content = original_texts[idx].get("text", "")
st.text(f"Text {idx}: {text_content[:100]}{'...' if len(text_content) > 100 else ''}")
else:
st.text(f"Text {idx}: [Index out of bounds]")
else:
st.info("**No elements were identified for removal by the LLM.**")
else:
# Fallback to the old method if processing result not available
st.warning("**Note: Using fallback calculation method**")
removed_texts = []
for i, text_elem in enumerate(original_texts):
if i >= len(redacted_texts) or text_elem.get("text", "") != redacted_texts[i].get("text", ""):
removed_texts.append((i, text_elem.get("text", "")[:100] + "..." if len(text_elem.get("text", "")) > 100 else text_elem.get("text", "")))
for idx, text in removed_texts:
st.text(f"Text {idx}: {text}")
else:
st.info("No text elements were removed during processing.")
# Show processing logs
st.subheader("Processing Logs")
st.text_area(
label="Processing logs",
value=st.session_state.logs.get(selected_file, ""),
height=300,
label_visibility="collapsed"
)
|