Spaces:
Runtime error
Runtime error
File size: 7,464 Bytes
9fda83d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import cv2
import mediapipe as mp
import numpy as np
from moviepy.editor import (
VideoFileClip, AudioFileClip)
mp_drawing = mp.solutions.drawing_utils
mp_selfie_segmentation = mp.solutions.selfie_segmentation
imgs = os.listdir("bg_imgs/")
rnd_img = "bg_imgs/" + np.random.choice(imgs)
#IMAGE_FILES = ["/home/samuel/Documents/Computer Vision Codes/istockphoto-1193994027-170667a.jpg"]
# For webcam input:
def load_from_webcam(bg_type: str = "blur"):
cap = cv2.VideoCapture(0)
with mp_selfie_segmentation.SelfieSegmentation(
model_selection=1) as selfie_segmentation:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = selfie_segmentation.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Draw selfie segmentation on the background image.
# To improve segmentation around boundaries, consider applying a joint
# bilateral filter to "results.segmentation_mask" with "image".
condition = np.stack(
(results.segmentation_mask,) * 3, axis=-1) > 0.7
# The background can be customized.
# a) Load an image (with the same width and height of the input image) to
# be the background, e.g., bg_image = cv2.imread('/path/to/image/file')
# b) Blur the input image by applying image filtering, e.g.,
# bg_image = cv2.GaussianBlur(image,(55,55),0)
image_height, image_width, _ = image.shape
if bg_type == "blur":
bg_image = cv2.GaussianBlur(image,(55,55),0)
if bg_type == "random_image":
bg_image = cv2.resize(cv2.imread(rnd_img), (image_width, image_height))
if (bg_image is None) or (bg_image == "solid_colors"):
bg_image = np.zeros(image.shape, dtype=np.uint8)
bg_image[:] = np.random.randint(0, high=256, size=(3,)).tolist()
output_image = np.where(condition, image, bg_image)
cv2.imshow('MediaPipe Selfie Segmentation', output_image)
if cv2.waitKey(5) & 0xFF == ord("q"):
break
cap.release()
# For static images
def load_from_static_image(file: cv2.Mat, bg_type: str = "solid_colors"):
with mp_selfie_segmentation.SelfieSegmentation(
model_selection=0) as selfie_segmentation:
#for idx, file in enumerate(IMAGE_FILES):
#print (file)
image = file #cv2.imread(file)
image_height, image_width, _ = image.shape
# Convert the BGR image to RGB before processing.
results = selfie_segmentation.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Draw selfie segmentation on the background image.
# To improve segmentation around boundaries, consider applying a joint
# bilateral filter to "results.segmentation_mask" with "image".
# increase threshold to 0.8 or reduce
condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > 0.8
if bg_type == "blur":
bg_image = cv2.GaussianBlur(image, (55,55), 0)
if bg_type == "random_image":
bg_image = cv2.resize(cv2.imread(rnd_img), (image_width, image_height))
if (bg_type is None) or (bg_type == "solid_colors"):
bg_image = np.zeros(image.shape, dtype=np.uint8)
bg_image[:] = np.random.randint(0, high=256, size=(3,)).tolist()
output_image = np.where(condition, image, bg_image)
return output_image
# For Videos
def load_from_video(file: str, bg_type: str = "solid_colors"):
vcap = cv2.VideoCapture(file)
# Get video properties
frame_width = int(vcap.get(3))
frame_height = int(vcap.get(4))
vid_fps = int(vcap.get(5))
vid_size = (frame_width, frame_height)
audio_path = "audio.mp3"
video_path = "output_video_from_file.mp4"
# *'h264'
output = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'avc1'), vid_fps, vid_size)
selfie_segmentation = mp_selfie_segmentation.SelfieSegmentation(model_selection=1)
solid_bg = np.random.randint(0, high=256, size=(3,)).tolist()
while True:
success, image = vcap.read()
if success == True:
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = selfie_segmentation.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
condition = np.stack(
(results.segmentation_mask, ) * 3, axis=-1) > 0.7
image_height, image_width = image.shape[:2]
if bg_type == "blur":
bg_image = cv2.GaussianBlur(image, (55,55),0)
if bg_type == "random_image":
bg_image = cv2.resize(cv2.imread(rnd_img), (image_width, image_height))
if (bg_type == None) | (bg_type == "solid_colors"):
bg_image = np.zeros(image.shape, dtype=np.uint8)
bg_image[:] = solid_bg
output_image = np.where(condition, image, bg_image)
output.write(output_image)
else:
print ("Video stream disconnected")
break
vcap.release()
output.release()
try:
clip = VideoFileClip(file)
clip.audio.write_audiofile(audio_path)
video_clip = VideoFileClip(video_path)
audio_clip = AudioFileClip(audio_path)
if video_clip.end > audio_clip.end:
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile("final.mp4")
else:
audio_clip = audio_clip.subclip(0, video_clip.end)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile("final.mp4")
os.remove(video_path)
os.remove(audio_path)
except AttributeError: #i.e there's no audio in the video
return "/home/samuel/Documents/Computer Vision Codes/selfie_seg/output_video_from_file.mp4"
return "final.mp4"
if __name__ == "__main__":
vp = "/home/samuel/Documents/Computer Vision Codes/Course Overview_5.mp4"
load_from_video(vp, bg_type="solid_colors")
vp = "/home/samuel/Documents/Computer Vision Codes/Course Overview_5.mp4"
""" vcap = cv2.VideoCapture(vp)
frame_width = int(vcap.get(3))
frame_height = int(vcap.get(4))
frame_size = (frame_width,frame_height)
fps = int(vcap.get(5))
audio_path = "audio.mp3"
video_path = "output_video_from_file.mp4"
output = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc('M','J','P','G'), fps, frame_size)
clip = VideoFileClip(vp)
clip.audio.write_audiofile(audio_path)
while True:
ret, frame = vcap.read()
if ret == True:
output.write(frame)
else:
print ("Video stram disconnected")
break
vcap.release()
output.release()
video_clip = VideoFileClip(video_path)
audio_clip = AudioFileClip(audio_path)
if video_clip.end > audio_clip.end:
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile("final.mp4")
else:
audio_clip = audio_clip.subclip(0, video_clip.end)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile("final.mp4")
os.remove(video_path)
os.remove(audio_path) """
#final_output = os.system("ffmpeg -i " + video_path+" -i "+audio_path+" -c:v copy -c:a aac "+output_path)
|