File size: 2,285 Bytes
b6668e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import mediapy
import gradio as gr
from utils import load_image
from interpolator import Interpolator, interpolate_recursively
path = "./smoot.mp4"
interpolator = Interpolator()
def predict(image_a, image_b):
image1 = load_image(image_a)
image2 = load_image(image_b)
input_frames = [image1, image2]
frames = list(interpolate_recursively(input_frames, interpolator))
mediapy.write_video(path, frames, fps=30)
return path
footer = r"""
<center>
<b>
Demo for <a href='https://www.tensorflow.org/hub/tutorials/tf_hub_delf_module'>DELF</a>
</b>
</center>
"""
coffe = r"""
<center>
<a href="https://www.buymeacoffee.com/leonelhs"><img src="https://img.buymeacoffee.com/button-api/?text=Buy me a
coffee&emoji=&slug=leonelhs&button_colour=FFDD00&font_colour=000000&font_family=Cookie&outline_colour=000000
&coffee_colour=ffffff" /></a>
</center>
"""
with gr.Blocks(title="DELF") as app:
gr.HTML("<center><h1>Match images using DELF</h1></center>")
gr.HTML("<center><h3>Neural network and logic for processing images to identify keypoints and their "
"descriptors.</h3></center>")
with gr.Row(equal_height=False):
with gr.Column():
input_img_a = gr.Image(type="filepath", label="Input image A")
input_img_b = gr.Image(type="filepath", label="Input image B")
run_btn = gr.Button(variant="primary")
with gr.Column():
output_img = gr.Video(format="mp4", label="Interpolate video")
gr.ClearButton(components=[input_img_a, input_img_b, output_img], variant="stop")
run_btn.click(predict, [input_img_a, input_img_b], [output_img])
with gr.Row():
blobs_a = [[f"examples/image_a/{x:02d}.jpg"] for x in range(1, 2)]
examples_a = gr.Dataset(components=[input_img_a], samples=blobs_a)
examples_a.click(lambda x: x[0], [examples_a], [input_img_a])
with gr.Row():
blobs_b = [[f"examples/image_b/{x:02d}.jpg"] for x in range(1, 2)]
examples_b = gr.Dataset(components=[input_img_b], samples=blobs_b)
examples_b.click(lambda x: x[0], [examples_b], [input_img_b])
with gr.Row():
gr.HTML(footer)
with gr.Row():
gr.HTML(coffe)
app.launch(share=False, debug=True, show_error=True)
app.queue()
|