File size: 7,561 Bytes
6325697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import numpy as np
import cv2
import torch
from torch.nn import functional as F
def split_input(model_input, total_pixels, n_pixels = 10000):
'''
Split the input to fit Cuda memory for large resolution.
Can decrease the value of n_pixels in case of cuda out of memory error.
'''
split = []
for i, indx in enumerate(torch.split(torch.arange(total_pixels).cuda(), n_pixels, dim=0)):
data = model_input.copy()
data['uv'] = torch.index_select(model_input['uv'], 1, indx)
split.append(data)
return split
def merge_output(res, total_pixels, batch_size):
''' Merge the split output. '''
model_outputs = {}
for entry in res[0]:
if res[0][entry] is None:
continue
if len(res[0][entry].shape) == 1:
model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, 1) for r in res],
1).reshape(batch_size * total_pixels)
else:
model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, r[entry].shape[-1]) for r in res],
1).reshape(batch_size * total_pixels, -1)
return model_outputs
def get_psnr(img1, img2, normalize_rgb=False):
if normalize_rgb: # [-1,1] --> [0,1]
img1 = (img1 + 1.) / 2.
img2 = (img2 + 1. ) / 2.
mse = torch.mean((img1 - img2) ** 2)
psnr = -10. * torch.log(mse) / torch.log(torch.Tensor([10.]).cuda())
return psnr
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv2.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K/K[2,2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose()
pose[:3,3] = (t[:3] / t[3])[:,0]
return intrinsics, pose
def get_camera_params(uv, pose, intrinsics):
if pose.shape[1] == 7: #In case of quaternion vector representation
cam_loc = pose[:, 4:]
R = quat_to_rot(pose[:,:4])
p = torch.eye(4).repeat(pose.shape[0],1,1).cuda().float()
p[:, :3, :3] = R
p[:, :3, 3] = cam_loc
else: # In case of pose matrix representation
cam_loc = pose[:, :3, 3]
p = pose
batch_size, num_samples, _ = uv.shape
depth = torch.ones((batch_size, num_samples)).cuda()
x_cam = uv[:, :, 0].view(batch_size, -1)
y_cam = uv[:, :, 1].view(batch_size, -1)
z_cam = depth.view(batch_size, -1)
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics)
# permute for batch matrix product
pixel_points_cam = pixel_points_cam.permute(0, 2, 1)
world_coords = torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]
ray_dirs = world_coords - cam_loc[:, None, :]
ray_dirs = F.normalize(ray_dirs, dim=2)
return ray_dirs, cam_loc
def lift(x, y, z, intrinsics):
# parse intrinsics
intrinsics = intrinsics.cuda()
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z
# homogeneous
return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)
def quat_to_rot(q):
batch_size, _ = q.shape
q = F.normalize(q, dim=1)
R = torch.ones((batch_size, 3,3)).cuda()
qr=q[:,0]
qi = q[:, 1]
qj = q[:, 2]
qk = q[:, 3]
R[:, 0, 0]=1-2 * (qj**2 + qk**2)
R[:, 0, 1] = 2 * (qj *qi -qk*qr)
R[:, 0, 2] = 2 * (qi * qk + qr * qj)
R[:, 1, 0] = 2 * (qj * qi + qk * qr)
R[:, 1, 1] = 1-2 * (qi**2 + qk**2)
R[:, 1, 2] = 2*(qj*qk - qi*qr)
R[:, 2, 0] = 2 * (qk * qi-qj * qr)
R[:, 2, 1] = 2 * (qj*qk + qi*qr)
R[:, 2, 2] = 1-2 * (qi**2 + qj**2)
return R
def rot_to_quat(R):
batch_size, _,_ = R.shape
q = torch.ones((batch_size, 4)).cuda()
R00 = R[:, 0,0]
R01 = R[:, 0, 1]
R02 = R[:, 0, 2]
R10 = R[:, 1, 0]
R11 = R[:, 1, 1]
R12 = R[:, 1, 2]
R20 = R[:, 2, 0]
R21 = R[:, 2, 1]
R22 = R[:, 2, 2]
q[:,0]=torch.sqrt(1.0+R00+R11+R22)/2
q[:, 1]=(R21-R12)/(4*q[:,0])
q[:, 2] = (R02 - R20) / (4 * q[:, 0])
q[:, 3] = (R10 - R01) / (4 * q[:, 0])
return q
def get_sphere_intersections(cam_loc, ray_directions, r = 1.0):
# Input: n_rays x 3 ; n_rays x 3
# Output: n_rays x 1, n_rays x 1 (close and far)
ray_cam_dot = torch.bmm(ray_directions.view(-1, 1, 3),
cam_loc.view(-1, 3, 1)).squeeze(-1)
under_sqrt = ray_cam_dot ** 2 - (cam_loc.norm(2, 1, keepdim=True) ** 2 - r ** 2)
# sanity check
if (under_sqrt <= 0).sum() > 0:
print('BOUNDING SPHERE PROBLEM!')
exit()
sphere_intersections = torch.sqrt(under_sqrt) * torch.Tensor([-1, 1]).cuda().float() - ray_cam_dot
sphere_intersections = sphere_intersections.clamp_min(0.0)
return sphere_intersections
def bilinear_interpolation(xs, ys, dist_map):
x1 = np.floor(xs).astype(np.int32)
y1 = np.floor(ys).astype(np.int32)
x2 = x1 + 1
y2 = y1 + 1
dx = np.expand_dims(np.stack([x2 - xs, xs - x1], axis=1), axis=1)
dy = np.expand_dims(np.stack([y2 - ys, ys - y1], axis=1), axis=2)
Q = np.stack([
dist_map[x1, y1], dist_map[x1, y2], dist_map[x2, y1], dist_map[x2, y2]
], axis=1).reshape(-1, 2, 2)
return np.squeeze(dx @ Q @ dy) # ((x2 - x1) * (y2 - y1)) = 1
def get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max):
samples_uniform_row = samples_uniform[:, 0]
samples_uniform_col = samples_uniform[:, 1]
index_outside = np.where((samples_uniform_row < bbox_min[0]) | (samples_uniform_row > bbox_max[0]) | (samples_uniform_col < bbox_min[1]) | (samples_uniform_col > bbox_max[1]))[0]
return index_outside
def weighted_sampling(data, img_size, num_sample, bbox_ratio=0.9):
"""
More sampling within the bounding box
"""
# calculate bounding box
mask = data["object_mask"]
where = np.asarray(np.where(mask))
bbox_min = where.min(axis=1)
bbox_max = where.max(axis=1)
num_sample_bbox = int(num_sample * bbox_ratio)
samples_bbox = np.random.rand(num_sample_bbox, 2)
samples_bbox = samples_bbox * (bbox_max - bbox_min) + bbox_min
num_sample_uniform = num_sample - num_sample_bbox
samples_uniform = np.random.rand(num_sample_uniform, 2)
samples_uniform *= (img_size[0] - 1, img_size[1] - 1)
# get indices for uniform samples outside of bbox
index_outside = get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max) + num_sample_bbox
indices = np.concatenate([samples_bbox, samples_uniform], axis=0)
output = {}
for key, val in data.items():
if len(val.shape) == 3:
new_val = np.stack([
bilinear_interpolation(indices[:, 0], indices[:, 1], val[:, :, i])
for i in range(val.shape[2])
], axis=-1)
else:
new_val = bilinear_interpolation(indices[:, 0], indices[:, 1], val)
new_val = new_val.reshape(-1, *val.shape[2:])
output[key] = new_val
return output, index_outside |