File size: 7,561 Bytes
6325697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import cv2
import torch
from torch.nn import functional as F


def split_input(model_input, total_pixels, n_pixels = 10000):
    '''
     Split the input to fit Cuda memory for large resolution.
     Can decrease the value of n_pixels in case of cuda out of memory error.
     '''

    split = []

    for i, indx in enumerate(torch.split(torch.arange(total_pixels).cuda(), n_pixels, dim=0)):
        data = model_input.copy()
        data['uv'] = torch.index_select(model_input['uv'], 1, indx)
        split.append(data)
    return split


def merge_output(res, total_pixels, batch_size):
    ''' Merge the split output. '''

    model_outputs = {}
    for entry in res[0]:
        if res[0][entry] is None:
            continue
        if len(res[0][entry].shape) == 1:
            model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, 1) for r in res],
                                             1).reshape(batch_size * total_pixels)
        else:
            model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, r[entry].shape[-1]) for r in res],
                                             1).reshape(batch_size * total_pixels, -1)
    return model_outputs


def get_psnr(img1, img2, normalize_rgb=False):
    if normalize_rgb: # [-1,1] --> [0,1]
        img1 = (img1 + 1.) / 2.
        img2 = (img2 + 1. ) / 2.

    mse = torch.mean((img1 - img2) ** 2)
    psnr = -10. * torch.log(mse) / torch.log(torch.Tensor([10.]).cuda())

    return psnr


def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()

    out = cv2.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K/K[2,2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()
    pose[:3,3] = (t[:3] / t[3])[:,0]

    return intrinsics, pose


def get_camera_params(uv, pose, intrinsics):
    if pose.shape[1] == 7: #In case of quaternion vector representation
        cam_loc = pose[:, 4:]
        R = quat_to_rot(pose[:,:4])
        p = torch.eye(4).repeat(pose.shape[0],1,1).cuda().float()
        p[:, :3, :3] = R
        p[:, :3, 3] = cam_loc
    else: # In case of pose matrix representation
        cam_loc = pose[:, :3, 3]
        p = pose

    batch_size, num_samples, _ = uv.shape

    depth = torch.ones((batch_size, num_samples)).cuda()
    x_cam = uv[:, :, 0].view(batch_size, -1)
    y_cam = uv[:, :, 1].view(batch_size, -1)
    z_cam = depth.view(batch_size, -1)

    pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics)

    # permute for batch matrix product
    pixel_points_cam = pixel_points_cam.permute(0, 2, 1)

    world_coords = torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]
    ray_dirs = world_coords - cam_loc[:, None, :]
    ray_dirs = F.normalize(ray_dirs, dim=2)

    return ray_dirs, cam_loc

def lift(x, y, z, intrinsics):
    # parse intrinsics
    intrinsics = intrinsics.cuda()
    fx = intrinsics[:, 0, 0]
    fy = intrinsics[:, 1, 1]
    cx = intrinsics[:, 0, 2]
    cy = intrinsics[:, 1, 2]
    sk = intrinsics[:, 0, 1]

    x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
    y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z

    # homogeneous
    return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)


def quat_to_rot(q):
    batch_size, _ = q.shape
    q = F.normalize(q, dim=1)
    R = torch.ones((batch_size, 3,3)).cuda()
    qr=q[:,0]
    qi = q[:, 1]
    qj = q[:, 2]
    qk = q[:, 3]
    R[:, 0, 0]=1-2 * (qj**2 + qk**2)
    R[:, 0, 1] = 2 * (qj *qi -qk*qr)
    R[:, 0, 2] = 2 * (qi * qk + qr * qj)
    R[:, 1, 0] = 2 * (qj * qi + qk * qr)
    R[:, 1, 1] = 1-2 * (qi**2 + qk**2)
    R[:, 1, 2] = 2*(qj*qk - qi*qr)
    R[:, 2, 0] = 2 * (qk * qi-qj * qr)
    R[:, 2, 1] = 2 * (qj*qk + qi*qr)
    R[:, 2, 2] = 1-2 * (qi**2 + qj**2)
    return R


def rot_to_quat(R):
    batch_size, _,_ = R.shape
    q = torch.ones((batch_size, 4)).cuda()

    R00 = R[:, 0,0]
    R01 = R[:, 0, 1]
    R02 = R[:, 0, 2]
    R10 = R[:, 1, 0]
    R11 = R[:, 1, 1]
    R12 = R[:, 1, 2]
    R20 = R[:, 2, 0]
    R21 = R[:, 2, 1]
    R22 = R[:, 2, 2]

    q[:,0]=torch.sqrt(1.0+R00+R11+R22)/2
    q[:, 1]=(R21-R12)/(4*q[:,0])
    q[:, 2] = (R02 - R20) / (4 * q[:, 0])
    q[:, 3] = (R10 - R01) / (4 * q[:, 0])
    return q


def get_sphere_intersections(cam_loc, ray_directions, r = 1.0):
    # Input: n_rays x 3 ; n_rays x 3
    # Output: n_rays x 1, n_rays x 1 (close and far)

    ray_cam_dot = torch.bmm(ray_directions.view(-1, 1, 3),
                            cam_loc.view(-1, 3, 1)).squeeze(-1)
    under_sqrt = ray_cam_dot ** 2 - (cam_loc.norm(2, 1, keepdim=True) ** 2 - r ** 2)

    # sanity check
    if (under_sqrt <= 0).sum() > 0:
        print('BOUNDING SPHERE PROBLEM!')
        exit()

    sphere_intersections = torch.sqrt(under_sqrt) * torch.Tensor([-1, 1]).cuda().float() - ray_cam_dot
    sphere_intersections = sphere_intersections.clamp_min(0.0)

    return sphere_intersections

def bilinear_interpolation(xs, ys, dist_map):
    x1 = np.floor(xs).astype(np.int32)
    y1 = np.floor(ys).astype(np.int32)
    x2 = x1 + 1
    y2 = y1 + 1

    dx = np.expand_dims(np.stack([x2 - xs, xs - x1], axis=1), axis=1)
    dy = np.expand_dims(np.stack([y2 - ys, ys - y1], axis=1), axis=2)
    Q = np.stack([
        dist_map[x1, y1], dist_map[x1, y2], dist_map[x2, y1], dist_map[x2, y2]
    ], axis=1).reshape(-1, 2, 2)
    return np.squeeze(dx @ Q @ dy)  # ((x2 - x1) * (y2 - y1)) = 1

def get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max):
    samples_uniform_row = samples_uniform[:, 0]
    samples_uniform_col = samples_uniform[:, 1]
    index_outside = np.where((samples_uniform_row < bbox_min[0]) | (samples_uniform_row > bbox_max[0]) | (samples_uniform_col < bbox_min[1]) | (samples_uniform_col > bbox_max[1]))[0]
    return index_outside


def weighted_sampling(data, img_size, num_sample, bbox_ratio=0.9):
    """
    More sampling within the bounding box
    """
    
    # calculate bounding box
    mask = data["object_mask"]
    where = np.asarray(np.where(mask))
    bbox_min = where.min(axis=1)
    bbox_max = where.max(axis=1)

    num_sample_bbox = int(num_sample * bbox_ratio)
    samples_bbox = np.random.rand(num_sample_bbox, 2)
    samples_bbox = samples_bbox * (bbox_max - bbox_min) + bbox_min

    num_sample_uniform = num_sample - num_sample_bbox
    samples_uniform = np.random.rand(num_sample_uniform, 2)
    samples_uniform *= (img_size[0] - 1, img_size[1] - 1)

    # get indices for uniform samples outside of bbox
    index_outside = get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max) + num_sample_bbox

    indices = np.concatenate([samples_bbox, samples_uniform], axis=0)
    output = {}
    for key, val in data.items():
        if len(val.shape) == 3:
            new_val = np.stack([
                bilinear_interpolation(indices[:, 0], indices[:, 1], val[:, :, i])
                for i in range(val.shape[2])
            ], axis=-1)
        else:
            new_val = bilinear_interpolation(indices[:, 0], indices[:, 1], val)
        new_val = new_val.reshape(-1, *val.shape[2:])
        output[key] = new_val
    
    return output, index_outside