Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,274 Bytes
87f795e db47fe5 87f795e db47fe5 87f795e db47fe5 87f795e 7807e94 87f795e 7807e94 87f795e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# A reimplemented version in public environments by Xiao Fu and Mu Hu
from typing import Any, Dict, Union
import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image
from diffusers import (
DiffusionPipeline,
DDIMScheduler,
AutoencoderKL,
)
from models.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode
from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
from utils.colormap import kitti_colormap
from utils.depth_ensemble import ensemble_depths
from utils.normal_ensemble import ensemble_normals
from utils.batch_size import find_batch_size
import cv2
class DepthNormalPipelineOutput(BaseOutput):
"""
Output class for Marigold monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
normal_np (`np.ndarray`):
Predicted normal map, with depth values in the range of [0, 1].
normal_colored (`PIL.Image.Image`):
Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
"""
depth_np: np.ndarray
depth_colored: Image.Image
normal_np: np.ndarray
normal_colored: Image.Image
uncertainty: Union[None, np.ndarray]
class DepthNormalEstimationPipeline(DiffusionPipeline):
# two hyper-parameters
latent_scale_factor = 0.18215
def __init__(self,
unet:UNet2DConditionModel,
vae:AutoencoderKL,
scheduler:DDIMScheduler,
image_encoder:CLIPVisionModelWithProjection,
feature_extractor:CLIPImageProcessor,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
)
self.img_embed = None
@torch.no_grad()
def __call__(self,
input_image:Image,
denoising_steps: int = 10,
ensemble_size: int = 10,
processing_res: int = 768,
match_input_res:bool =True,
batch_size:int = 0,
domain: str = "indoor",
color_map: str="Spectral",
show_progress_bar:bool = True,
ensemble_kwargs: Dict = None,
) -> DepthNormalPipelineOutput:
# inherit from thea Diffusion Pipeline
device = self.device
input_size = input_image.size
# adjust the input resolution.
if not match_input_res:
assert (
processing_res is not None
)," Value Error: `resize_output_back` is only valid with "
assert processing_res >=0
assert denoising_steps >=1
assert ensemble_size >=1
# --------------- Image Processing ------------------------
# Resize image
if processing_res >0:
input_image = resize_max_res(
input_image, max_edge_resolution=processing_res
)
# Convert the image to RGB, to 1. reomve the alpha channel.
input_image = input_image.convert("RGB")
image = np.array(input_image)
# Normalize RGB Values.
rgb = np.transpose(image,(2,0,1))
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(device)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- predicting depth -----------------
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
single_rgb_dataset = TensorDataset(duplicated_rgb)
# find the batch size
if batch_size>0:
_bs = batch_size
else:
_bs = 1
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
# predicted the depth
depth_pred_ls = []
normal_pred_ls = []
if show_progress_bar:
iterable_bar = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable_bar = single_rgb_loader
for batch in iterable_bar:
(batched_image, )= batch # here the image is still around 0-1
depth_pred_raw, normal_pred_raw = self.single_infer(
input_rgb=batched_image,
num_inference_steps=denoising_steps,
domain=domain,
show_pbar=show_progress_bar,
)
depth_pred_ls.append(depth_pred_raw.detach().clone())
normal_pred_ls.append(normal_pred_raw.detach().clone())
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1:
depth_pred, pred_uncert = ensemble_depths(
depth_preds, **(ensemble_kwargs or {})
)
normal_pred = ensemble_normals(normal_preds)
else:
depth_pred = depth_preds
normal_pred = normal_preds
pred_uncert = None
# ----------------- Post processing -----------------
# Scale prediction to [0, 1]
min_d = torch.min(depth_pred)
max_d = torch.max(depth_pred)
depth_pred = (depth_pred - min_d) / (max_d - min_d)
# Convert to numpy
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
normal_pred = normal_pred.cpu().numpy().astype(np.float32)
# Resize back to original resolution
if match_input_res:
pred_img = Image.fromarray(depth_pred)
pred_img = pred_img.resize(input_size)
depth_pred = np.asarray(pred_img)
normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
# Clip output range: current size is the original size
depth_pred = depth_pred.clip(0, 1)
normal_pred = normal_pred.clip(-1, 1)
# Colorize
depth_colored = colorize_depth_maps(
depth_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = chw2hwc(depth_colored)
depth_colored_img = Image.fromarray(depth_colored_hwc)
normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
normal_colored_img = Image.fromarray(normal_colored)
return DepthNormalPipelineOutput(
depth_np = depth_pred,
depth_colored = depth_colored_img,
normal_np = normal_pred,
normal_colored = normal_colored_img,
uncertainty=pred_uncert,
)
def __encode_img_embed(self, rgb):
"""
Encode clip embeddings for img
"""
clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
img_in_proc = TF.resize((rgb +1)/2,
(self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
interpolation=InterpolationMode.BICUBIC,
antialias=True
)
# do the normalization in float32 to preserve precision
img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
self.img_embed = img_embed
@torch.no_grad()
def single_infer(self,input_rgb:torch.Tensor,
num_inference_steps:int,
domain:str,
show_pbar:bool,):
device = input_rgb.device
# Set timesteps: inherit from the diffuison pipeline
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
timesteps = self.scheduler.timesteps # [T]
# encode image
rgb_latent = self.encode_RGB(input_rgb)
# Initial geometric maps (Guassian noise)
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
rgb_latent = rgb_latent.repeat(2,1,1,1)
# Batched img embedding
if self.img_embed is None:
self.__encode_img_embed(input_rgb)
batch_img_embed = self.img_embed.repeat(
(rgb_latent.shape[0], 1, 1)
) # [B, 1, 768]
# hybrid switcher
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
if domain == "indoor":
domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
elif domain == "outdoor":
domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
elif domain == "object":
domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
unet_input = torch.cat([rgb_latent, geo_latent], dim=1)
# predict the noise residual
noise_pred = self.unet(
unet_input, t.repeat(2), encoder_hidden_states=batch_img_embed, class_labels=class_embedding
).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
geo_latent = geo_latent
torch.cuda.empty_cache()
depth = self.decode_depth(geo_latent[0][None])
depth = torch.clip(depth, -1.0, 1.0)
depth = (depth + 1.0) / 2.0
normal = self.decode_normal(geo_latent[1][None])
normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
normal *= -1.
return depth, normal
def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.latent_scale_factor
return rgb_latent
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
"""
Decode normal latent into normal map.
Args:
normal_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded normal map.
"""
# scale latent
normal_latent = normal_latent / self.latent_scale_factor
# decode
z = self.vae.post_quant_conv(normal_latent)
normal = self.vae.decoder(z)
return normal
|