File size: 9,228 Bytes
768ec2e
74e80e3
768ec2e
74e80e3
 
768ec2e
74e80e3
768ec2e
 
 
 
 
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
 
 
 
 
768ec2e
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
768ec2e
74e80e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
title: OpenLLM Live Training Space
emoji: ๐Ÿš€
colorFrom: green
colorTo: blue
sdk: gradio
sdk_version: 4.44.1
app_file: app.py
pinned: false
license: gpl-3.0
---

# ๐Ÿš€ OpenLLM Live Training Space

## ๐Ÿ“š What is This Space?

Welcome to the **OpenLLM Live Training Space**! This is an interactive web application where you can train new language models from existing checkpoints with customizable parameters. Think of it as a "training playground" where you can experiment with different training configurations in real-time.

### ๐ŸŽฏ What Makes This Special?

Unlike most AI demos that only allow you to use pre-trained models, **this space lets you actually train new models** with your own settings:

- **Interactive Training**: Configure and start training sessions in real-time
- **Parameter Experimentation**: Try different learning rates, batch sizes, and optimization settings
- **Live Monitoring**: Watch training progress and metrics as they happen
- **Educational**: Learn how different parameters affect model training
- **No Setup Required**: Train models without installing anything locally

## ๐Ÿง  Understanding Model Training

### What is Model Training?

Model training is like teaching a student by showing them millions of examples. The model learns patterns from the data and gradually improves its ability to predict what comes next.

**Example Training Process:**
1. **Input**: "The weather today is..."
2. **Model Prediction**: "sunny" (might be wrong initially)
3. **Correction**: "Actually, it's rainy"
4. **Learning**: Model adjusts its "thinking" to do better next time
5. **Repeat**: Millions of times until the model gets good at predictions

### How Does Training Work?

#### The Training Loop
1. **Forward Pass**: Model makes a prediction
2. **Loss Calculation**: Measure how wrong the prediction was
3. **Backward Pass**: Calculate how to adjust the model
4. **Parameter Update**: Update model weights to improve
5. **Repeat**: Continue until the model performs well

#### Key Parameters
- **Learning Rate**: How big steps to take when learning (too big = overshooting, too small = slow learning)
- **Batch Size**: How many examples to process at once (affects memory usage and training speed)
- **Training Steps**: How long to train (more steps = potentially better performance)
- **Optimizer**: Algorithm for updating model weights (AdamW, Adam, SGD)

## ๐ŸŽฎ How to Use This Space

### Step-by-Step Guide

#### 1. Configure Training Parameters
- **Learning Rate**: Start with 3e-4 (0.0003) for most cases
- **Batch Size**: Choose based on your memory constraints (8-16 is usually good)
- **Training Steps**: 
  - 1000 steps = Quick experiment (10-30 minutes)
  - 5000 steps = Medium training (1-3 hours)
  - 10000 steps = Extended training (3-8 hours)

#### 2. Start Training
- Click the "๐Ÿš€ Start Training" button
- Watch the status updates in real-time
- Monitor loss values and training progress

#### 3. Monitor Progress
- **Loss**: Should decrease over time (lower is better)
- **Learning Rate**: May change based on scheduler
- **Steps**: Current progress through training

#### 4. Download Results
- Once training completes, download your trained model
- Use it for text generation or further fine-tuning

### Training Scenarios

#### Quick Experiments (1000 steps)
- **Best for**: Testing different learning rates and configurations
- **Duration**: 10-30 minutes
- **Use case**: Hyperparameter exploration and rapid prototyping

#### Medium Training (5000 steps)
- **Best for**: Significant model improvement and fine-tuning
- **Duration**: 1-3 hours
- **Use case**: Model optimization and performance enhancement

#### Extended Training (10000 steps)
- **Best for**: Maximum performance improvement
- **Duration**: 3-8 hours
- **Use case**: Production model development and research

## ๐Ÿ“Š Understanding the Parameters

### Learning Parameters
- **Learning Rate**: Controls how fast the model learns
  - Too high: Model might overshoot and never converge
  - Too low: Training takes forever
  - Sweet spot: Usually between 1e-4 and 1e-3

- **Batch Size**: Number of examples processed together
  - Larger: More stable gradients, but uses more memory
  - Smaller: Less memory, but potentially less stable training

### Optimization Settings
- **Gradient Accumulation**: Simulates larger batch sizes with less memory
- **Optimizer**: Algorithm for updating weights
  - AdamW: Usually the best choice for transformers
  - Adam: Good general-purpose optimizer
  - SGD: Simple but may need more tuning

- **Scheduler**: How learning rate changes over time
  - Cosine: Smooth decrease, often works well
  - Linear: Straight-line decrease
  - Constant: No change (rarely used)

### Advanced Options
- **Weight Decay**: Prevents overfitting by penalizing large weights
- **Gradient Clipping**: Prevents exploding gradients
- **Warmup Steps**: Gradually increase learning rate at the start

## ๐ŸŽ“ Educational Value

### What You'll Learn

#### 1. Training Dynamics
- How loss decreases over time
- The relationship between learning rate and convergence
- When to stop training (avoiding overfitting)

#### 2. Hyperparameter Tuning
- How different parameters affect training
- The trade-offs between speed and quality
- Best practices for different scenarios

#### 3. Model Development
- The complete training workflow
- How to evaluate model performance
- When to use different training strategies

#### 4. Practical Skills
- Reading training logs and metrics
- Understanding model convergence
- Debugging training issues

### Learning Path

#### Beginner Level
1. Start with default parameters
2. Try different training step counts
3. Observe how loss changes over time

#### Intermediate Level
1. Experiment with different learning rates
2. Try different optimizers and schedulers
3. Understand the relationship between parameters

#### Advanced Level
1. Fine-tune all parameters for optimal performance
2. Understand the underlying training algorithms
3. Apply these concepts to your own projects

## ๐Ÿ”ฌ Research Applications

### What Can You Do With This?

#### 1. Hyperparameter Research
- Study how different parameters affect training
- Find optimal configurations for specific tasks
- Understand parameter interactions

#### 2. Training Methodologies
- Compare different optimization strategies
- Study learning rate schedules
- Research training stability techniques

#### 3. Model Development
- Prototype new training approaches
- Test different architectures
- Develop custom training pipelines

#### 4. Educational Research
- Study how people learn about ML
- Develop better teaching methods
- Create interactive learning experiences

## ๐Ÿ› ๏ธ Technical Details

### Base Model
This space uses the **lemms/openllm-small-extended-9k** model as the starting point, which is our best-performing model with:
- **Architecture**: GPT-style transformer
- **Parameters**: ~35.8M
- **Training**: 9,000 steps on SQUAD dataset
- **Performance**: ~5.2 loss, ~177 perplexity

### Training Infrastructure
- **Framework**: PyTorch with custom training loop
- **Optimization**: AdamW optimizer with cosine scheduling
- **Memory Management**: Gradient checkpointing and accumulation
- **Monitoring**: Real-time loss and metric tracking

### Limitations
- **Demo Mode**: This is a demonstration of training capabilities
- **Resource Constraints**: Limited GPU time per session
- **Model Size**: Currently supports small models only
- **Dataset**: Uses pre-processed SQUAD dataset

## ๐Ÿ”— Related Resources

### OpenLLM Project
- **[Model Demo Space](https://huggingface.co/spaces/lemms/llm)** - Test trained models
- **[GitHub Repository](https://github.com/louischua/osllm)** - Source code and documentation
- **[Training Documentation](../docs/TRAINING_IMPROVEMENTS.md)** - Detailed training guide

### Learning Resources
- **PyTorch Tutorials**: Official PyTorch documentation
- **Transformer Papers**: "Attention Is All You Need" and follow-ups
- **Training Guides**: Hugging Face training tutorials

### Community
- **GitHub Discussions**: Ask questions and share results
- **Discord/Slack**: Join our community chat
- **Twitter**: Follow for updates and announcements

## ๐Ÿ“ž Support and Contact

### Getting Help
- **GitHub Issues**: For bugs and feature requests
- **Discussions**: For questions and general help
- **Email**: louischua@gmail.com for private matters

### Contact Information
- **Author**: Louis Chua Bean Chong
- **GitHub**: https://github.com/louischua/openllm
- **Model Demo**: https://huggingface.co/spaces/lemms/llm

## ๐Ÿ“„ License

This space is part of the OpenLLM project and is available under the GPLv3 license for open source use, with commercial licensing options available.

---

## ๐ŸŽ‰ Start Training!

Ready to train your own language model? Configure your parameters and click "Start Training" to begin your AI learning journey!

**Remember**: This is a demonstration space. For production training, please refer to the full OpenLLM documentation and run training locally or on your own infrastructure.

---

*This space is maintained by Louis Chua Bean Chong and the open-source community. Your feedback and contributions are welcome!*