File size: 26,603 Bytes
8f3458c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#!/usr/bin/env python3
"""

OpenLLM Real Models App - Final working version with correct attribute naming

"""

import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import logging
import sentencepiece as spm
import math
from pathlib import Path
from typing import Dict, Any, Optional
from huggingface_hub import snapshot_download

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class GPTConfig:
    """GPT model configuration"""
    def __init__(self, vocab_size=32000, n_layer=6, n_head=8, n_embd=512,

                 block_size=1024, dropout=0.1, bias=True, **kwargs):
        # Accept any additional kwargs to handle extra config fields
        self.vocab_size = vocab_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.block_size = block_size
        self.dropout = dropout
        self.bias = bias

class GPT(nn.Module):
    """GPT-style transformer model - EXACT architecture matching the saved model"""
    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config
        
        # Create the transformer module with the exact naming convention
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        
        # Language model head - MUST have bias to match saved model
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
        
        # Initialize weights
        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
    
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        
        if targets is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            logits = self.lm_head(x[:, [-1], :])
            loss = None
        
        return logits, loss
    
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, top_p=None, do_sample=True):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            
            if top_p is not None:
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                sorted_indices_to_remove[..., 0] = 0
                indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                logits[indices_to_remove] = -float('Inf')
            
            probs = F.softmax(logits, dim=-1)
            if do_sample:
                idx_next = torch.multinomial(probs, num_samples=1)
            else:
                _, idx_next = torch.topk(probs, k=1, dim=-1)
            
            idx = torch.cat((idx, idx_next), dim=1)
        
        return idx

class Block(nn.Module):
    """Transformer block with self-attention and feed-forward layers"""
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)
    
    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class CausalSelfAttention(nn.Module):
    """Multi-head self-attention with causal masking - FINAL WORKING VERSION"""
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.use_bias = config.bias  # Use different name for the boolean flag
        
        # REGISTER THE ATTENTION BIAS as a buffer (not parameter) to match saved model
        # This is actually an attention mask, not a learnable bias
        if config.bias:
            # Create a causal attention mask buffer
            mask = torch.tril(torch.ones(config.block_size, config.block_size))
            mask = mask.view(1, 1, config.block_size, config.block_size)
            self.register_buffer('bias', mask)  # This matches the saved model's 'bias' key
        else:
            self.register_buffer('bias', None)
    
    def forward(self, x):
        B, T, C = x.size()
        
        # Calculate query, key, values for all heads
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        
        # Causal self-attention using the bias mask
        if self.bias is not None:
            # Use the causal mask
            attn_mask = self.bias[:, :, :T, :T]
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.dropout if self.training else 0, is_causal=False)
        else:
            # Use built-in causal attention
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
        
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        
        # Output projection
        y = self.resid_dropout(self.c_proj(y))
        return y

class MLP(nn.Module):
    """Multi-layer perceptron"""
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
    
    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class RealOpenLLMInference:
    """Real OpenLLM inference engine using actual trained models"""
    
    def __init__(self):
        self.models = {}
        self.tokenizers = {}
        self.current_model = None
        
        # Real model configurations from Hugging Face
        self.model_configs = {
            "openllm-small-extended-4k": {
                "name": "OpenLLM Small (4k steps)",
                "description": "Real model trained for 4,000 steps - Early training stage",
                "hf_repo": "lemms/openllm-small-extended-4k",
                "training_steps": 4000,
                "parameters": "35.8M"
            },
            "openllm-small-extended-6k": {
                "name": "OpenLLM Small (6k steps)",
                "description": "Real model trained for 6,000 steps - Improved coherence (Perplexity: 816.040)",
                "hf_repo": "lemms/openllm-small-extended-6k",
                "training_steps": 6000,
                "parameters": "35.8M"
            },
            "openllm-small-extended-7k": {
                "name": "OpenLLM Small (7k steps)",
                "description": "Real model trained for 7,000 steps - Enhanced quality (Loss: 2.100, Perplexity: 8.200)",
                "hf_repo": "lemms/openllm-small-extended-7k",
                "training_steps": 7000,
                "parameters": "35.8M"
            },
            "openllm-small-extended-8k": {
                "name": "OpenLLM Small (8k steps)",
                "description": "Real model trained for 8,000 steps - Sophisticated understanding",
                "hf_repo": "lemms/openllm-small-extended-8k",
                "training_steps": 8000,
                "parameters": "35.8M"
            },
            "openllm-small-extended-9k": {
                "name": "OpenLLM Small (9k steps)",
                "description": "Real model trained for 9,000 steps - Best performing model",
                "hf_repo": "lemms/openllm-small-extended-9k",
                "training_steps": 9000,
                "parameters": "35.8M"
            },
            "openllm-small-extended-10k": {
                "name": "OpenLLM Small (10k steps)",
                "description": "Real model trained for 10,000 steps - Latest extended training",
                "hf_repo": "lemms/openllm-small-extended-10k",
                "training_steps": 10000,
                "parameters": "35.8M"
            }
        }
        
        logger.info("πŸš€ Real OpenLLM Inference Engine initialized")
    
    def load_model_from_hf(self, model_id: str) -> bool:
        """Load a real model from Hugging Face"""
        try:
            config = self.model_configs.get(model_id)
            if not config:
                logger.error(f"❌ Unknown model ID: {model_id}")
                return False
            
            logger.info(f"πŸ“₯ Loading real model from HF: {config['hf_repo']}")
            
            # Download model from Hugging Face
            local_dir = snapshot_download(
                repo_id=config['hf_repo'],
                repo_type="model",
                local_dir=f"temp_{model_id}",
                allow_patterns=["*.pt", "*.json", "*.model", "*.bin"]
            )
            
            logger.info(f"βœ… Downloaded model to: {local_dir}")
            
            # Load model and tokenizer
            success = self._load_model_and_tokenizer(local_dir, model_id)
            if success:
                self.current_model = model_id
                logger.info(f"βœ… Successfully loaded real model: {model_id}")
                return True
            else:
                return False
                
        except Exception as e:
            logger.error(f"❌ Failed to load real model from HF {model_id}: {e}")
            return False
    
    def _load_model_and_tokenizer(self, model_dir: str, model_id: str) -> bool:
        """Load model and tokenizer from local directory"""
        try:
            model_path = Path(model_dir)
            
            # Load model configuration
            config_file = model_path / "config.json"
            if config_file.exists():
                with open(config_file, 'r') as f:
                    config_data = json.load(f)
                
                logger.info(f"πŸ“‹ Config data keys: {list(config_data.keys())}")
                
                # Handle different config structures
                if 'model_config' in config_data:
                    # Extract model_config section
                    model_config_data = config_data['model_config']
                else:
                    # Use the entire config as model config
                    model_config_data = config_data
                
                # Create GPTConfig with only the expected parameters
                expected_params = {
                    'vocab_size', 'n_layer', 'n_head', 'n_embd', 
                    'block_size', 'dropout', 'bias'
                }
                
                config_kwargs = {}
                for key, value in model_config_data.items():
                    if key in expected_params:
                        config_kwargs[key] = value
                
                logger.info(f"πŸ”§ Using config parameters: {config_kwargs}")
                model_config = GPTConfig(**config_kwargs)
            else:
                # Default configuration for OpenLLM small models
                model_config = GPTConfig(
                    vocab_size=32000,
                    n_layer=6,
                    n_head=8,
                    n_embd=512,
                    block_size=1024,
                    dropout=0.1,
                    bias=True
                )
            
            # Load model weights
            model_file = model_path / "best_model.pt"
            if not model_file.exists():
                model_file = model_path / "model.pt"
            if not model_file.exists():
                model_file = model_path / "pytorch_model.bin"
            
            if model_file.exists():
                logger.info(f"πŸ“¦ Loading model from: {model_file}")
                model = GPT(model_config)
                checkpoint = torch.load(model_file, map_location='cpu')
                
                # Handle different checkpoint formats
                if isinstance(checkpoint, dict):
                    if 'model_state_dict' in checkpoint:
                        # Extract the actual model weights
                        state_dict = checkpoint['model_state_dict']
                        logger.info(f"πŸ“‹ Loading from model_state_dict with {len(state_dict)} keys")
                    elif 'model' in checkpoint:
                        state_dict = checkpoint['model']
                        logger.info(f"πŸ“‹ Loading from model with {len(state_dict)} keys")
                    else:
                        # Try to load directly as state dict
                        state_dict = checkpoint
                        logger.info(f"πŸ“‹ Loading direct state dict with {len(state_dict)} keys")
                else:
                    # Direct state dict
                    state_dict = checkpoint
                    logger.info(f"πŸ“‹ Loading direct state dict with {len(state_dict)} keys")
                
                # Load the state dict
                model.load_state_dict(state_dict)
                model.eval()
                self.models[model_id] = model
                logger.info(f"βœ… Model loaded successfully")
            else:
                logger.error(f"❌ Model file not found in {model_dir}")
                logger.error(f"   Available files: {list(model_path.glob('*'))}")
                return False
            
            # Load tokenizer
            tokenizer_file = model_path / "tokenizer.model"
            if tokenizer_file.exists():
                tokenizer = spm.SentencePieceProcessor()
                tokenizer.load(str(tokenizer_file))
                self.tokenizers[model_id] = tokenizer
                logger.info(f"βœ… Tokenizer loaded successfully")
            else:
                logger.error(f"❌ Tokenizer file not found in {model_dir}")
                return False
            
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to load model and tokenizer: {e}")
            import traceback
            logger.error(f"πŸ“‹ Full traceback: {traceback.format_exc()}")
            return False
    
    def generate_text(self, prompt: str, max_length: int = 100,

                     temperature: float = 0.7, top_k: int = 50,

                     top_p: float = 0.9) -> str:
        """Generate text using the loaded real model"""
        if not self.current_model or self.current_model not in self.models:
            return "❌ No model loaded. Please select a model first."
        
        try:
            model = self.models[self.current_model]
            tokenizer = self.tokenizers[self.current_model]
            
            # Tokenize input
            input_ids = tokenizer.encode(prompt)
            input_tensor = torch.tensor([input_ids], dtype=torch.long)
            
            logger.info(f"🎯 Generating text with prompt: '{prompt[:50]}...'")
            logger.info(f"πŸ“Š Parameters: max_length={max_length}, temperature={temperature}, top_k={top_k}, top_p={top_p}")
            
            # Generate text
            with torch.no_grad():
                output_ids = model.generate(
                    input_tensor,
                    max_new_tokens=max_length,
                    temperature=temperature,
                    top_k=top_k,
                    top_p=top_p,
                    do_sample=True
                )
            
            # Decode output
            generated_text = tokenizer.decode(output_ids[0].tolist())
            
            # Remove the input prompt from the output
            if generated_text.startswith(prompt):
                generated_text = generated_text[len(prompt):].strip()
            
            logger.info(f"βœ… Generated text: '{generated_text[:100]}...'")
            return generated_text
            
        except Exception as e:
            error_msg = f"❌ Generation failed: {str(e)}"
            logger.error(error_msg)
            import traceback
            logger.error(f"πŸ“‹ Full traceback: {traceback.format_exc()}")
            return error_msg

# Initialize the real inference engine
inference_engine = RealOpenLLMInference()

def load_model_info(model_id: str) -> str:
    """Get information about a specific model"""
    config = inference_engine.model_configs.get(model_id)
    if config:
        return f"**{config['name']}**\n\n{config['description']}\n\n**Parameters:** {config['parameters']}\n**Training Steps:** {config['training_steps']:,}"
    return "❌ Model not found"

def generate_text_interface(model_id: str, prompt: str, max_length: int,

                          temperature: float, top_k: int, top_p: float) -> str:
    """Gradio interface function for text generation"""
    try:
        # Load model if not already loaded
        if model_id not in inference_engine.models:
            logger.info(f"πŸ”„ Loading real model: {model_id}")
            success = inference_engine.load_model_from_hf(model_id)
            if not success:
                return f"❌ Failed to load real model: {model_id}"
        
        # Generate text
        result = inference_engine.generate_text(
            prompt=prompt,
            max_length=max_length,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p
        )
        
        return result
        
    except Exception as e:
        error_msg = f"❌ Error in generation interface: {str(e)}"
        logger.error(error_msg)
        return error_msg

# Create Gradio interface
def create_interface():
    """Create the Gradio interface"""
    
    with gr.Blocks(
        title="πŸš€ OpenLLM Real Models Space",
        theme=gr.themes.Soft()
    ) as interface:
        
        # Header
        gr.Markdown("""

        # πŸš€ OpenLLM Real Models Space

        

        Welcome to the OpenLLM Real Models Space! This interface uses **actual trained models** from Hugging Face.

        

        ## 🎯 Real Trained Models

        

        We provide **5 different real models** with varying training steps:

        

        | Model | Training Steps | Parameters | Performance |

        |-------|---------------|------------|-------------|

        | **4k Model** | 4,000 | 35.8M | Early training stage |

        | **6k Model** | 6,000 | 35.8M | Improved coherence (Perplexity: 816.040) |

        | **7k Model** | 7,000 | 35.8M | Enhanced quality (Loss: 2.100, Perplexity: 8.200) |

        | **8k Model** | 8,000 | 35.8M | Sophisticated understanding |

        | **9k Model** | 9,000 | 35.8M | Best performing model |

        | **10k Model** | 10,000 | 35.8M | Latest extended training |

        

        **These are real GPT-style transformer models trained on Wikipedia passages from the SQuAD dataset.**

        

        ---

        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Model selection
                model_dropdown = gr.Dropdown(
                    choices=list(inference_engine.model_configs.keys()),
                    value="openllm-small-extended-10k",
                    label="🎯 Select Model",
                    info="Choose the real trained model to use"
                )
                
                # Model information display
                model_info = gr.Markdown(
                    value=load_model_info("openllm-small-extended-10k"),
                    label="πŸ“‹ Model Information"
                )
                
                # Update model info when selection changes
                model_dropdown.change(
                    fn=load_model_info,
                    inputs=[model_dropdown],
                    outputs=[model_info]
                )
            
            with gr.Column(scale=2):
                # Input prompt
                prompt_input = gr.Textbox(
                    lines=5,
                    label="πŸ“ Input Prompt",
                    placeholder="Enter your text prompt here...",
                    info="The text that will be used as input for generation"
                )
                
                # Generation parameters
                with gr.Row():
                    max_length = gr.Slider(
                        minimum=10,
                        maximum=500,
                        value=100,
                        step=10,
                        label="πŸ“ Max Length",
                        info="Maximum number of tokens to generate"
                    )
                    
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=0.7,
                        step=0.1,
                        label="🌑️ Temperature",
                        info="Controls randomness (higher = more random)"
                    )
                
                with gr.Row():
                    top_k = gr.Slider(
                        minimum=1,
                        maximum=100,
                        value=50,
                        step=1,
                        label="πŸ” Top-K",
                        info="Number of highest probability tokens to consider"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        label="πŸ“Š Top-P",
                        info="Nucleus sampling parameter"
                    )
                
                # Generate button
                generate_btn = gr.Button(
                    "πŸš€ Generate Text",
                    variant="primary",
                    size="lg"
                )
        
        # Output
        output_text = gr.Textbox(
            lines=10,
            label="🎯 Generated Text",
            info="The generated text will appear here"
        )
        
        # Connect the generate button
        generate_btn.click(
            fn=generate_text_interface,
            inputs=[model_dropdown, prompt_input, max_length, temperature, top_k, top_p],
            outputs=[output_text]
        )
        
        # Footer
        gr.Markdown("""

        ---

        

        ## πŸ”§ Technical Details

        

        - **Architecture**: GPT-style transformer decoder

        - **Model Size**: Small (6 layers, 8 heads, 512 embedding dim)

        - **Vocabulary**: 32k tokens (SentencePiece BPE)

        - **Training Data**: Wikipedia passages from SQuAD dataset

        - **Framework**: PyTorch with real trained models

        - **Gradio Version**: 4.44.1 (latest)

        

        **These models generate actual text based on their training on Wikipedia content.**

        

        **Model Sources:**

        - [4k Model](https://huggingface.co/lemms/openllm-small-extended-4k)

        - [6k Model](https://huggingface.co/lemms/openllm-small-extended-6k)

        - [7k Model](https://huggingface.co/lemms/openllm-small-extended-7k)

        - [8k Model](https://huggingface.co/lemms/openllm-small-extended-8k)

        - [9k Model](https://huggingface.co/lemms/openllm-small-extended-9k)

        - [10k Model](https://huggingface.co/lemms/openllm-small-extended-10k)

        """)
    
    return interface

# Create and launch the interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )