File size: 10,036 Bytes
e00b837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import asyncio
import csv
import json
import time
import typing
from typing import Optional

import requests
from fastavro import parse_schema, reader, writer

from . import EmbedResponse, EmbedResponse_EmbeddingsFloats, EmbedResponse_EmbeddingsByType, ApiMeta, \
    EmbedByTypeResponseEmbeddings, ApiMetaBilledUnits, EmbedJob, CreateEmbedJobResponse, Dataset
from .datasets import DatasetsCreateResponse, DatasetsGetResponse


def get_terminal_states():
    return get_success_states() | get_failed_states()


def get_success_states():
    return {"complete", "validated"}


def get_failed_states():
    return {"unknown", "failed", "skipped", "cancelled", "failed"}


def get_id(
        awaitable: typing.Union[CreateEmbedJobResponse, DatasetsCreateResponse, EmbedJob, DatasetsGetResponse]):
    return getattr(awaitable, "job_id", None) or getattr(awaitable, "id", None) or getattr(
        getattr(awaitable, "dataset", None), "id", None)


def get_validation_status(awaitable: typing.Union[EmbedJob, DatasetsGetResponse]):
    return getattr(awaitable, "status", None) or getattr(getattr(awaitable, "dataset", None), "validation_status", None)


def get_job(cohere: typing.Any,
            awaitable: typing.Union[CreateEmbedJobResponse, DatasetsCreateResponse, EmbedJob, DatasetsGetResponse]) -> \
        typing.Union[
            EmbedJob, DatasetsGetResponse]:
    if awaitable.__class__.__name__ == "EmbedJob" or awaitable.__class__.__name__ == "CreateEmbedJobResponse":
        return cohere.embed_jobs.get(id=get_id(awaitable))
    elif awaitable.__class__.__name__ == "DatasetsGetResponse" or awaitable.__class__.__name__ == "DatasetsCreateResponse":
        return cohere.datasets.get(id=get_id(awaitable))
    else:
        raise ValueError(f"Unexpected awaitable type {awaitable}")


async def async_get_job(cohere: typing.Any, awaitable: typing.Union[CreateEmbedJobResponse, DatasetsCreateResponse]) -> \
        typing.Union[
            EmbedJob, DatasetsGetResponse]:
    if awaitable.__class__.__name__ == "EmbedJob" or awaitable.__class__.__name__ == "CreateEmbedJobResponse":
        return await cohere.embed_jobs.get(id=get_id(awaitable))
    elif awaitable.__class__.__name__ == "DatasetsGetResponse" or awaitable.__class__.__name__ == "DatasetsCreateResponse":
        return await cohere.datasets.get(id=get_id(awaitable))
    else:
        raise ValueError(f"Unexpected awaitable type {awaitable}")


def get_failure_reason(job: typing.Union[EmbedJob, DatasetsGetResponse]) -> Optional[str]:
    if isinstance(job, EmbedJob):
        return f"Embed job {job.job_id} failed with status {job.status}"
    elif isinstance(job, DatasetsGetResponse):
        return f"Dataset creation failed with status {job.dataset.validation_status} and error : {job.dataset.validation_error}"
    return None


@typing.overload
def wait(
        cohere: typing.Any,
        awaitable: CreateEmbedJobResponse,
        timeout: Optional[float] = None,
        interval: float = 10,
) -> EmbedJob:
    ...


@typing.overload
def wait(
        cohere: typing.Any,
        awaitable: DatasetsCreateResponse,
        timeout: Optional[float] = None,
        interval: float = 10,
) -> DatasetsGetResponse:
    ...


def wait(
        cohere: typing.Any,
        awaitable: typing.Union[CreateEmbedJobResponse, DatasetsCreateResponse],
        timeout: Optional[float] = None,
        interval: float = 2,
) -> typing.Union[EmbedJob, DatasetsGetResponse]:
    start_time = time.time()
    terminal_states = get_terminal_states()
    failed_states = get_failed_states()

    job = get_job(cohere, awaitable)
    while get_validation_status(job) not in terminal_states:
        if timeout is not None and time.time() - start_time > timeout:
            raise TimeoutError(f"wait timed out after {timeout} seconds")

        time.sleep(interval)
        print("...")

        job = get_job(cohere, awaitable)

    if get_validation_status(job) in failed_states:
        raise Exception(get_failure_reason(job))

    return job


@typing.overload
async def async_wait(
        cohere: typing.Any,
        awaitable: CreateEmbedJobResponse,
        timeout: Optional[float] = None,
        interval: float = 10,
) -> EmbedJob:
    ...


@typing.overload
async def async_wait(
        cohere: typing.Any,
        awaitable: DatasetsCreateResponse,
        timeout: Optional[float] = None,
        interval: float = 10,
) -> DatasetsGetResponse:
    ...


async def async_wait(
        cohere: typing.Any,
        awaitable: typing.Union[CreateEmbedJobResponse, DatasetsCreateResponse],
        timeout: Optional[float] = None,
        interval: float = 10,
) -> typing.Union[EmbedJob, DatasetsGetResponse]:
    start_time = time.time()
    terminal_states = get_terminal_states()
    failed_states = get_failed_states()

    job = await async_get_job(cohere, awaitable)
    while get_validation_status(job) not in terminal_states:
        if timeout is not None and time.time() - start_time > timeout:
            raise TimeoutError(f"wait timed out after {timeout} seconds")

        await asyncio.sleep(interval)
        print("...")

        job = await async_get_job(cohere, awaitable)

    if get_validation_status(job) in failed_states:
        raise Exception(get_failure_reason(job))

    return job


def sum_fields_if_not_none(obj: typing.Any, field: str) -> Optional[int]:
    non_none = [getattr(obj, field) for obj in obj if getattr(obj, field) is not None]
    return sum(non_none) if non_none else None


def merge_meta_field(metas: typing.List[ApiMeta]) -> ApiMeta:
    api_version = metas[0].api_version
    billed_units = [meta.billed_units for meta in metas]
    input_tokens = sum_fields_if_not_none(billed_units, "input_tokens")
    output_tokens = sum_fields_if_not_none(billed_units, "output_tokens")
    search_units = sum_fields_if_not_none(billed_units, "search_units")
    classifications = sum_fields_if_not_none(billed_units, "classifications")
    warnings = {warning for meta in metas if meta.warnings for warning in meta.warnings}
    return ApiMeta(
        api_version=api_version,
        billed_units=ApiMetaBilledUnits(
            input_tokens=input_tokens,
            output_tokens=output_tokens,
            search_units=search_units,
            classifications=classifications
        ),
        warnings=list(warnings)
    )


def merge_embed_responses(responses: typing.List[EmbedResponse]) -> EmbedResponse:
    meta = merge_meta_field([response.meta for response in responses if response.meta])
    response_id = ", ".join(response.id for response in responses)
    texts = [
        text
        for response in responses
        for text in response.texts
    ]

    if responses[0].response_type == "embeddings_floats":
        embeddings_floats = typing.cast(typing.List[EmbedResponse_EmbeddingsFloats], responses)

        embeddings = [
            embedding
            for embeddings_floats in embeddings_floats
            for embedding in embeddings_floats.embeddings
        ]

        return EmbedResponse_EmbeddingsFloats(
            response_type="embeddings_floats",
            id=response_id,
            texts=texts,
            embeddings=embeddings,
            meta=meta
        )
    else:
        embeddings_type = typing.cast(typing.List[EmbedResponse_EmbeddingsByType], responses)

        embeddings_by_type = [
            response.embeddings
            for response in embeddings_type
        ]

        # only get set keys from the pydantic model (i.e. exclude fields that are set to 'None')
        fields = embeddings_type[0].embeddings.dict(exclude_unset=True).keys()

        merged_dicts = {
            field: [
                embedding
                for embedding_by_type in embeddings_by_type
                for embedding in getattr(embedding_by_type, field)
            ]
            for field in fields
        }

        embeddings_by_type_merged = EmbedByTypeResponseEmbeddings.parse_obj(merged_dicts)

        return EmbedResponse_EmbeddingsByType(
            response_type="embeddings_by_type",
            id=response_id,
            embeddings=embeddings_by_type_merged,
            texts=texts,
            meta=meta
        )


supported_formats = ["jsonl", "csv", "avro"]


def save_avro(dataset: Dataset, filepath: str):
    if not dataset.schema_:
        raise ValueError("Dataset does not have a schema")
    schema = parse_schema(json.loads(dataset.schema_))
    with open(filepath, "wb") as outfile:
        writer(outfile, schema, dataset_generator(dataset))


def save_jsonl(dataset: Dataset, filepath: str):
    with open(filepath, "w") as outfile:
        for data in dataset_generator(dataset):
            json.dump(data, outfile)
            outfile.write("\n")


def save_csv(dataset: Dataset, filepath: str):
    with open(filepath, "w") as outfile:
        for i, data in enumerate(dataset_generator(dataset)):
            if i == 0:
                writer = csv.DictWriter(outfile, fieldnames=list(data.keys()))
                writer.writeheader()
            writer.writerow(data)


def dataset_generator(dataset: Dataset):
    if not dataset.dataset_parts:
        raise ValueError("Dataset does not have dataset_parts")
    for part in dataset.dataset_parts:
        if not part.url:
            raise ValueError("Dataset part does not have a url")
        resp = requests.get(part.url, stream=True)
        for record in reader(resp.raw):
            yield record


class SdkUtils:

    @staticmethod
    def save_dataset(dataset: Dataset, filepath: str, format: typing.Literal["jsonl", "csv", "avro"] = "jsonl"):
        if format == "jsonl":
            return save_jsonl(dataset, filepath)
        if format == "csv":
            return save_csv(dataset, filepath)
        if format == "avro":
            return save_avro(dataset, filepath)
        raise Exception(f"unsupported format must be one of : {supported_formats}")


class SyncSdkUtils(SdkUtils):
    pass


class AsyncSdkUtils(SdkUtils):
    pass