newapp / app.py
leilaaaaa's picture
Update app.py
641194a verified
import gradio as gr
from PIL import Image
import io
import base64
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient("microsoft/llava-med-7b-delta")
# Function to encode image as base64
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
# Function to interact with LLAVA model
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
image=None
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
if image:
# Convert image to base64
if isinstance(image, Image.Image):
image_b64 = image_to_base64(image)
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
else:
for img in image:
image_b64 = image_to_base64(img)
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
messages.append({"role": "user", "content": message})
try:
responses = []
for response in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = response.choices[0].delta.content
responses.append(token)
return responses
except Exception as e:
error_message = f"Error: {str(e)}"
return [error_message]
except Exception as e:
return [str(e)]
# Debugging print statements
print("Starting Gradio interface setup...")
try:
# Create a Gradio interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Image(label="Upload Medical Image", type="pil"),
gr.Textbox(label="Message")
],
outputs=gr.Textbox(label="Response", placeholder="Model response will appear here..."),
title="LLAVA Model - Medical Image and Question",
description="Upload a medical image and ask a specific question about the image for a medical description.",
additional_inputs=[
gr.Textbox(label="System message", value="You are a friendly Chatbot."),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
]
)
# Launch the Gradio interface
if __name__ == "__main__":
print("Launching Gradio interface...")
demo.launch()
except Exception as e:
print(f"Error during Gradio setup: {str(e)}")