File size: 5,172 Bytes
25485b9
53e9d10
25485b9
 
 
 
 
 
a9a06b0
25485b9
 
53e9d10
25485b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5de796
53e9d10
25485b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import logging
import gradio as gr
import wandb
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import peft
from peft import PeftModel
import torch

wandb.login()
wandb.init(project='journal-finetune', entity='benbankston2')


# Initialize logging
logging.basicConfig(level=logging.INFO)

base_model_id = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
    base_model_id,    
    device_map="auto",
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
    ),
    torch_dtype=torch.bfloat16,
    # FA2 does not work yet
    # attn_implementation="flash_attention_2",          
)


#model = pipeline("text-generation", model=model_name)
model = PeftModel.from_pretrained(model, "phi2-journal-finetune/checkpoint-175")
model.to("cuda")

tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token

def generate_text(prompt):
    logging.info(f"Generating text for prompt: {prompt}")
    model_input = tokenizer(prompt, return_tensors="pt").to("cuda")#100
    #response = model(prompt, max_new_tokens=100, temperature=0.6, top_p=0.8, repetition_penalty=2.5, do_sample=True)
    response = tokenizer.decode(model.generate(
        **model_input, max_new_tokens=256, 
        repetition_penalty=1.11)[0], 
        temperature = 1,
        eos_token_id=tokenizer.pad_token,
        skip_special_tokens=True,
        early_stopping = True,
        )
    #best_response = response[0]['generated_text']
    logging.info(f"Generated text: {response}")
    return response

def message_and_history(input_text, history, feedback = None):
    """Manage message history and generate responses."""#100
    if history is None:
        history = []
    history2 = list(sum(history, ()))
    history2.append(input_text)
    input = ''.join(history2)
    output = generate_text(input_text)#input)
    history.append(("User", input_text))
    history.append(("Fizz Bot", output))
    return history, history

def setup_interface():
    with gr.Blocks(css='''
        body { font-family: 'Arial', sans-serif; background: #f1f1f1; }
        .container { max-width: 800px; margin: auto; padding: 20px; background-size: cover; background-repeat: no-repeat; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1); }
        h1 { color: #003F87; text-align: center; margin-bottom: 20px; }
        .gr-textbox { box-shadow: inset 0 2px 3px rgba(0,0,0,0.1); border-radius: 4px; border: 1px solid #7FB2E5; padding: 10px; width: auto; background-color: #fff; }
        .gradio-chatbox { background-color: #f0f0f0; }
        parameter-accordion .gr-accordion-title { font-weight: bold; font-size: 18px; } /* Custom CSS for accordion title */
        .gradio-chatbox-message-user { background-color: #4A90E2; color: white; }
        .gradio-chatbox-message-bot { background-color: #FFFFFF; color: black; }
        .gradio-chatbox-message { border-radius: 10px; padding: 10px; margin-bottom: 8px; }
        ''', theme ="Soft") as block:

        gr.Markdown("""
            <div style="background-image: url('https://my.wlu.edu/Images/communications/publications/graphic-identity/300-dpi-wordmark-blue.png'); 
            background-size: contain; 
            background-repeat: no-repeat; 
            background-position: center; 
            text-align: center; 
            height: 100px; 
            line-height: 100px; 
            font-size: 36px; 
            color: white; 
            font-family: Arial, sans-serif;">
            </div>
        """)
        gr.Markdown("<h1>Fizz Chatbot</h1>")
        gr.Markdown("<h6><i>Disclaimer: some information may be inaccurate</i></h6>")
        with gr.Accordion("Parameters", open=False, visible=True, elem_classes=["parameter-accordion"]) as parameter_row:
            temperature = gr.Slider(
                minimum = 0.0,
                maximum = 1.0,
                value = 0.7, 
                step=0.1,
                interactive = True,
                label="Temperature"
            )
            top_p = gr.Slider(
                minimum = 0.0,
                maximum = 1.0,
                value = 1.0, 
                step=0.1,
                interactive = True,
                label="Top P"
            )
            max_new_tokens = gr.Slider(
                minimum = 16,
                maximum = 1028,
                value = 128, 
                step= 32,
                interactive = True,
                label="Max tokens"
            )
        chatbot = gr.Chatbot(label="W&L AI")
        message = gr.Textbox(label="", placeholder="Ask me anything about W&L here...", elem_id="input_box")
        submit = gr.Button("Submit Query", elem_classes="specific_button")
        submit.click(
            fn=message_and_history,
            inputs=[message, gr.State()],
            outputs=[chatbot, gr.State()]
        )
        gr.Row([chatbot])
        gr.Row([message, submit])

    return block

app = setup_interface()
app.launch(debug=True)