File size: 49,998 Bytes
07d760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
import einops
import inspect
import torch
import numpy as np
import PIL
import os

from dataclasses import dataclass
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import (
    CONFIG_NAME,
    DEPRECATED_REVISION_ARGS,
    BaseOutput,
    PushToHubMixin,
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    is_torch_npu_available,
    is_torch_version,
    logging,
    numpy_to_pil,
    replace_example_docstring,
)
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import BaseOutput
# from diffusers.image_processor import VaeImageProcessor
from transformers import T5EncoderModel, T5Tokenizer
from typing import Any, Callable, Dict, List, Optional, Union
from PIL import Image

from onediffusion.models.denoiser.nextdit import NextDiT
from onediffusion.dataset.utils import *
from onediffusion.dataset.multitask.multiview import calculate_rays
from onediffusion.diffusion.pipelines.image_processor import VaeImageProcessorOneDiffuser

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

SUPPORTED_DEVICE_MAP = ["balanced"]

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from one_diffusion import OneDiffusionPipeline

        >>> pipe = OneDiffusionPipeline.from_pretrained("path_to_one_diffuser_model")
        >>> pipe = pipe.to("cuda")

        >>> prompt = "A beautiful sunset over the ocean"
        >>> image = pipe(prompt).images[0]
        >>> image.save("beautiful_sunset.png")
        ```
"""

def create_c2w_matrix(azimuth_deg, elevation_deg, distance=1.0, target=np.array([0, 0, 0])):
    """
    Create a Camera-to-World (C2W) matrix from azimuth and elevation angles.

    Parameters:
    - azimuth_deg: Azimuth angle in degrees.
    - elevation_deg: Elevation angle in degrees.
    - distance: Distance from the target point.
    - target: The point the camera is looking at in world coordinates.

    Returns:
    - C2W: A 4x4 NumPy array representing the Camera-to-World transformation matrix.
    """
    # Convert angles from degrees to radians
    azimuth = np.deg2rad(azimuth_deg)
    elevation = np.deg2rad(elevation_deg)

    # Spherical to Cartesian conversion for camera position
    x = distance * np.cos(elevation) * np.cos(azimuth)
    y = distance * np.cos(elevation) * np.sin(azimuth)
    z = distance * np.sin(elevation)
    camera_position = np.array([x, y, z])

    # Define the forward vector (from camera to target)
    target = 2*camera_position - target
    forward = target - camera_position
    forward /= np.linalg.norm(forward)

    # Define the world up vector
    world_up = np.array([0, 0, 1])

    # Compute the right vector
    right = np.cross(world_up, forward)
    if np.linalg.norm(right) < 1e-6:
        # Handle the singularity when forward is parallel to world_up
        world_up = np.array([0, 1, 0])
        right = np.cross(world_up, forward)
    right /= np.linalg.norm(right)

    # Recompute the orthogonal up vector
    up = np.cross(forward, right)

    # Construct the rotation matrix
    rotation = np.vstack([right, up, forward]).T  # 3x3

    # Construct the full C2W matrix
    C2W = np.eye(4)
    C2W[:3, :3] = rotation
    C2W[:3, 3] = camera_position

    return C2W

@dataclass
class OneDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[Image.Image], np.ndarray]
    latents: Optional[torch.Tensor] = None


def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")
    
    
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
    # max_clip: float = 1.5,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len) # 0.000169270833
    b = base_shift - m * base_seq_len # 0.5-0.0433333332
    mu = image_seq_len * m + b
    # mu = min(mu, max_clip)
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps



class OneDiffusionPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using OneDiffuser.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        transformer ([`NextDiT`]):
            Conditional transformer (NextDiT) architecture to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. OneDiffuser uses the T5 model as text encoder.
        tokenizer (`T5Tokenizer`):
            Tokenizer of class T5Tokenizer.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    def __init__(
        self,
        transformer: NextDiT,
        vae: AutoencoderKL,
        text_encoder: T5EncoderModel,
        tokenizer: T5Tokenizer,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()
        self.register_modules(
            transformer=transformer,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessorOneDiffuser(vae_scale_factor=self.vae_scale_factor)

    def enable_vae_slicing(self):
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        self.vae.disable_slicing()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [self.transformer, self.text_encoder, self.vae]:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    def _execution_device(self):
        if self.device != torch.device("meta") or not hasattr(self.transformer, "_hf_hook"):
            return self.device
        for module in self.transformer.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        max_length=300,
    ):
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        attention_mask = text_inputs.attention_mask

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {max_length} tokens: {removed_text}"
            )

        text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
        prompt_embeds = text_encoder_output[0].to(torch.float32)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # duplicate attention mask for each generation per prompt
        attention_mask = attention_mask.repeat(1, num_images_per_prompt)
        attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            uncond_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device))
            negative_prompt_embeds = uncond_encoder_output[0].to(torch.float32)

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # duplicate unconditional attention mask for each generation per prompt
            uncond_attention_mask = uncond_input.attention_mask.repeat(1, num_images_per_prompt)
            uncond_attention_mask = uncond_attention_mask.view(batch_size * num_images_per_prompt, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            attention_mask = torch.cat([uncond_attention_mask, attention_mask])

        return prompt_embeds.to(device), attention_mask.to(device)

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        forward_kwargs: Optional[Dict[str, Any]] = {},
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to self.transformer.config.sample_size):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.transformer.config.sample_size):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
        width = width or self.transformer.config.input_size[-1] * 8

        # check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf
        do_classifier_free_guidance = guidance_scale > 1.0

        encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )

        # set timesteps
        # # self.scheduler.set_timesteps(num_inference_steps, device=device)
        # timesteps = self.scheduler.timesteps
        timesteps = None

        # prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            self.dtype,
            device,
            generator,
            latents,
        )

        # prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)
        
        # denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                # latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.transformer(
                    samples=latent_model_input.to(self.dtype),
                    timesteps=torch.tensor([t] * latent_model_input.shape[0], device=device),
                    encoder_hidden_states=encoder_hidden_states.to(self.dtype),
                    encoder_attention_mask=encoder_attention_mask,
                    **forward_kwargs
                )

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # scale and decode the image latents with vae
        latents = 1 / self.vae.config.scaling_factor * latents
        if latents.ndim == 5:
            latents = latents.squeeze(1)
        image = self.vae.decode(latents.to(self.vae.dtype)).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, None)

        return OneDiffusionPipelineOutput(images=image)

    @torch.no_grad()
    def img2img(
        self,
        prompt: Union[str, List[str]] = None,
        image: Union[PIL.Image.Image, List[PIL.Image.Image]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        denoise_mask: Optional[List[int]] = [1, 0],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        do_crop: bool = True,
        is_multiview: bool = False,
        multiview_azimuths: Optional[List[int]] = [0, 30, 60, 90],
        multiview_elevations: Optional[List[int]] = [0, 0, 0, 0],
        multiview_distances: float = 1.7,
        multiview_c2ws: Optional[List[torch.Tensor]] = None,
        multiview_intrinsics: Optional[torch.Tensor] = None,
        multiview_focal_length: float = 1.3887,
        forward_kwargs: Optional[Dict[str, Any]] = {},
        noise_scale: float = 1.0,
        **kwargs,
):
        # Convert single image to list for consistent handling
        if isinstance(image, PIL.Image.Image):
            image = [image]
            
        if height is None or width is None:
            closest_ar = get_closest_ratio(height=image[0].size[1], width=image[0].size[0], ratios=ASPECT_RATIO_512)
            height, width = int(closest_ar[0][0]), int(closest_ar[0][1])
        
        if not isinstance(multiview_distances, list) and not isinstance(multiview_distances, tuple):
            multiview_distances = [multiview_distances] * len(multiview_azimuths)
            
        # height = height or self.transformer.config.input_size[-2] * 8  # TODO: Hardcoded downscale factor of vae
        # width = width or self.transformer.config.input_size[-1] * 8

        # 1. check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # Additional input validation for image list
        if not all(isinstance(img, PIL.Image.Image) for img in image):
            raise ValueError("All elements in image list must be PIL.Image objects")

        # 2. define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )

        # 4. Preprocess all images
        if image is not None and len(image) > 0:
            processed_image = self.image_processor.preprocess(image, height=height, width=width, do_crop=do_crop)
        else:
            processed_image = None
            
        # # Stack processed images along the sequence dimension
        # if len(processed_images) > 1:
        #     processed_image = torch.cat(processed_images, dim=0)
        # else:
        #     processed_image = processed_images[0]

        timesteps = None

        # 6. prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        if processed_image is not None:
            cond_latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height,
                width,
                self.dtype,
                device,
                generator,
                latents,
                image=processed_image,
            )
        else:
            cond_latents = None
            
        # 7. prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        denoise_mask = torch.tensor(denoise_mask, device=device)
        denoise_indices = torch.where(denoise_mask == 1)[0]
        cond_indices = torch.where(denoise_mask == 0)[0]
        seq_length = denoise_mask.shape[0]

        latents = self.prepare_init_latents(
            batch_size * num_images_per_prompt,
            seq_length,
            num_channels_latents,
            height,
            width,
            self.dtype,
            device,
            generator,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        # image_seq_len = latents.shape[1] * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
        image_seq_len = noise_scale * sum(denoise_mask) * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
        # image_seq_len = 256
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)
        
        if is_multiview:
            cond_indices_images = [index // 2 for index in cond_indices if index % 2 == 0]
            cond_indices_rays = [index // 2 for index in cond_indices if index % 2 == 1]
                        
            multiview_elevations = [element for element in multiview_elevations if element is not None]
            multiview_azimuths = [element for element in multiview_azimuths if element is not None]
            multiview_distances = [element for element in multiview_distances if element is not None]
            
            if multiview_c2ws is None:
                multiview_c2ws = [
                    torch.tensor(create_c2w_matrix(azimuth, elevation, distance)) for azimuth, elevation, distance in zip(multiview_azimuths, multiview_elevations, multiview_distances)
                ]
                c2ws = torch.stack(multiview_c2ws).float()
            else:
                c2ws = torch.Tensor(multiview_c2ws).float()    
                
            c2ws[:, 0:3, 1:3] *= -1
            c2ws = c2ws[:, [1, 0, 2, 3], :]
            c2ws[:, 2, :] *= -1
            
            w2cs = torch.inverse(c2ws)
            if multiview_intrinsics is None:
                multiview_intrinsics = torch.Tensor([[[multiview_focal_length, 0, 0.5], [0, multiview_focal_length, 0.5], [0, 0, 1]]]).repeat(c2ws.shape[0], 1, 1)
            K = multiview_intrinsics
            Rs = w2cs[:, :3, :3]
            Ts = w2cs[:, :3, 3]
            sizes = torch.Tensor([[1, 1]]).repeat(c2ws.shape[0], 1)

            assert height == width
            cond_rays = calculate_rays(K, sizes, Rs, Ts, height // 8)
            cond_rays = cond_rays.reshape(-1, height // 8, width // 8, 6)
            # padding = (0, 10)
            # cond_rays = torch.nn.functional.pad(cond_rays, padding, "constant", 0)
            cond_rays = torch.cat([cond_rays, cond_rays, cond_rays[..., :4]], dim=-1) * 1.658
            cond_rays = cond_rays[None].repeat(batch_size * num_images_per_prompt, 1, 1, 1, 1)
            cond_rays = cond_rays.permute(0, 1, 4, 2, 3)
            cond_rays = cond_rays.to(device, dtype=self.dtype)

            latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
            if cond_latents is not None:
                latents[:, cond_indices_images, 0] = cond_latents
            latents[:, cond_indices_rays, 1] = cond_rays
            latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
        else:
            if cond_latents is not None:
                latents[:, cond_indices] = cond_latents
        
        # denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                input_t = torch.broadcast_to(einops.repeat(torch.Tensor([t]).to(device), "1 -> 1 f 1 1 1", f=latent_model_input.shape[1]), latent_model_input.shape).clone()
                
                if is_multiview:
                    input_t = einops.rearrange(input_t, "b (f n) c h w -> b f n c h w", n=2)
                    input_t[:, cond_indices_images, 0] = self.scheduler.timesteps[-1]
                    input_t[:, cond_indices_rays, 1] = self.scheduler.timesteps[-1]
                    input_t = einops.rearrange(input_t, "b f n c h w -> b (f n) c h w")
                else:
                    input_t[:, cond_indices] = self.scheduler.timesteps[-1]

                # predict the noise residual
                noise_pred = self.transformer(
                    samples=latent_model_input.to(self.dtype),
                    timesteps=input_t,
                    encoder_hidden_states=encoder_hidden_states.to(self.dtype),
                    encoder_attention_mask=encoder_attention_mask,
                    **forward_kwargs
                )

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                bs, n_frame = noise_pred.shape[:2]
                noise_pred = einops.rearrange(noise_pred, "b f c h w -> (b f) c h w")
                latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
                latents = einops.rearrange(latents, "(b f) c h w -> b f c h w", b=bs, f=n_frame)
                if is_multiview:
                    latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
                    if cond_latents is not None:
                        latents[:, cond_indices_images, 0] = cond_latents
                    latents[:, cond_indices_rays, 1] = cond_rays
                    latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
                else:
                    if cond_latents is not None:
                        latents[:, cond_indices] = cond_latents

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        decoded_latents = latents / 1.658
        # scale and decode the image latents with vae
        latents = 1 / self.vae.config.scaling_factor * latents
        if latents.ndim == 5:
            latents = latents[:, denoise_indices]
            latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
        image = self.vae.decode(latents.to(self.vae.dtype)).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, None)

        return OneDiffusionPipelineOutput(images=image, latents=decoded_latents)
    
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, prompt, height, width, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        if image is None:
            # scale the initial noise by the standard deviation required by the scheduler
            # latents = latents * self.scheduler.init_noise_sigma
            return latents
        
        image = image.to(device=device, dtype=dtype)
        
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )
        elif isinstance(generator, list):
            if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
                image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
            elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
                raise ValueError(
                    f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
                )
            init_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(batch_size)
            ]
            init_latents = torch.cat(init_latents, dim=0)
        else:
            init_latents = retrieve_latents(self.vae.encode(image.to(self.vae.dtype)), generator=generator)
            
        init_latents = self.vae.config.scaling_factor * init_latents
        init_latents = init_latents.to(device=device, dtype=dtype)

        init_latents = einops.rearrange(init_latents, "(bs views) c h w -> bs views c h w", bs=batch_size, views=init_latents.shape[0]//batch_size)
        # latents = einops.rearrange(latents, "b c h w -> b 1 c h w")
        # latents = torch.concat([latents, init_latents], dim=1)
        return init_latents
    
    def prepare_init_latents(self, batch_size, seq_length, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, seq_length, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        return latents

    @torch.no_grad()
    def generate(
        self,
        prompt: Union[str, List[str]],
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = None,
        width: Optional[int] = None,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ):
        """
        Function for image generation using the OneDiffusionPipeline.
        """
        return self(
            prompt=prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            height=height,
            width=width,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
        )

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        model_path = pretrained_model_name_or_path
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        use_onnx = kwargs.pop("use_onnx", None)
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
        
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
            )

        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        transformer = NextDiT.from_pretrained(f"{model_path}", subfolder="transformer", torch_dtype=torch.float32, cache_dir=cache_dir)
        vae = AutoencoderKL.from_pretrained(f"{model_path}", subfolder="vae", cache_dir=cache_dir)
        text_encoder = T5EncoderModel.from_pretrained(f"{model_path}", subfolder="text_encoder", torch_dtype=torch.float16, cache_dir=cache_dir)
        tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer", cache_dir=cache_dir)
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", cache_dir=cache_dir)

        pipeline = cls(
            transformer=transformer,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            **kwargs
        )

        return pipeline