File size: 6,609 Bytes
2bb21bd
 
2d61ea6
f6bb466
 
16ca3cf
 
 
b3c49d3
 
16ca3cf
 
 
 
 
 
 
 
 
 
 
 
 
2bb21bd
93e6bc9
2bb21bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
ef7492c
2bb21bd
93e6bc9
d21b068
93e6bc9
 
 
6d24aee
93e6bc9
 
 
 
2bb21bd
ca0ea4c
c97092f
95b7524
2bb21bd
ca0ea4c
eddc0ef
2bb21bd
 
 
 
 
 
 
 
 
 
 
 
 
16ca3cf
2bb21bd
 
 
 
1678c48
2bb21bd
de05f69
 
 
 
2bb21bd
 
 
16ca3cf
 
 
 
 
 
 
 
 
 
2bb21bd
 
adb2981
 
 
2d61ea6
adb2981
 
 
 
 
 
 
16ca3cf
2bb21bd
16ca3cf
 
 
 
 
 
 
 
 
adb2981
 
 
2bb21bd
4d300d7
 
 
6dfd871
4d300d7
 
 
 
 
2bb21bd
 
 
 
 
4df9c3c
2bb21bd
 
57f1b5a
 
c9f12d5
4df9c3c
adb2981
4df9c3c
 
16ca3cf
 
d83c819
 
16ca3cf
aceed58
3114537
d83c819
16ca3cf
2bb21bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from gradio_client import Client
import os
import json
import re
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip

hf_token = os.environ.get("HF_TKN")

def extract_audio(video_in):
    input_video = video_in
    output_audio = 'audio.wav'
    
    # Open the video file and extract the audio
    video_clip = VideoFileClip(input_video)
    audio_clip = video_clip.audio
    
    # Save the audio as a .wav file
    audio_clip.write_audiofile(output_audio, fps=44100)  # Use 44100 Hz as the sample rate for .wav files  
    print("Audio extraction complete.")

    return 'audio.wav'

def get_caption_from_kosmos(image_in):
    kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")

    kosmos2_result = kosmos2_client.predict(
        image_in,	# str (filepath or URL to image) in 'Test Image' Image component
        "Detailed",	# str in 'Description Type' Radio component
        fn_index=4
    )

    print(f"KOSMOS2 RETURNS: {kosmos2_result}")

    with open(kosmos2_result[1], 'r') as f:
        data = json.load(f)
    
    reconstructed_sentence = []
    for sublist in data:
        reconstructed_sentence.append(sublist[0])

    full_sentence = ' '.join(reconstructed_sentence)
    #print(full_sentence)

    # Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
    pattern = r'^Describe this image in detail:\s*(.*)$'
    # Apply the regex pattern to extract the description text.
    match = re.search(pattern, full_sentence)
    if match:
        description = match.group(1)
        print(description)
    else:
        print("Unable to locate valid description.")

    # Find the last occurrence of "."
    last_period_index = description.rfind('.')

    # Truncate the string up to the last period
    truncated_caption = description[:last_period_index + 1]

    # print(truncated_caption)
    print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
    
    return truncated_caption

def get_caption(image_in):
    client = Client("https://fffiloni-moondream1.hf.space/", hf_token=hf_token)
    result = client.predict(
		image_in,	# filepath  in 'image' Image component
		"Describe precisely the image in one sentence.",	# str  in 'Question' Textbox component
		api_name="/answer_question"
    )
    print(result)
    return result

def get_magnet(prompt):
    amended_prompt = f"{prompt}"
    print(amended_prompt)
    client = Client("https://fffiloni-magnet.hf.space/")
    result = client.predict(
        "facebook/audio-magnet-medium",	# Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium']  in 'Model' Radio component
        "",	# str  in 'Model Path (custom models)' Textbox component
        amended_prompt,	# str  in 'Input Text' Textbox component
        3,	# float  in 'Temperature' Number component
        0.9,	# float  in 'Top-p' Number component
        10,	# float  in 'Max CFG coefficient' Number component
        1,	# float  in 'Min CFG coefficient' Number component
        20,	# float  in 'Decoding Steps (stage 1)' Number component
        10,	# float  in 'Decoding Steps (stage 2)' Number component
        10,	# float  in 'Decoding Steps (stage 3)' Number component
        10,	# float  in 'Decoding Steps (stage 4)' Number component
        "prod-stride1 (new!)",	# Literal['max-nonoverlap', 'prod-stride1 (new!)']  in 'Span Scoring' Radio component
        api_name="/predict_full"
    )
    print(result)
    return result[1]

def get_audioldm(prompt):
    client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
    result = client.predict(
        prompt,	# str in 'Input text' Textbox component
        "Low quality. Music.",	# str in 'Negative prompt' Textbox component
        10,	# int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
        3.5,	# int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
        45,	# int | float in 'Seed' Number component
        3,	# int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
        fn_index=1
    )
    print(result)
    audio_result = extract_audio(result)
    return audio_result

def get_audiogen(prompt):
    client = Client("https://fffiloni-audiogen.hf.space/")
    result = client.predict(
        prompt,
        10,
        api_name="/infer"
    )
    return result

def get_tango(prompt):
    client = Client("https://declare-lab-tango.hf.space/")
    result = client.predict(
				prompt,	# str representing string value in 'Prompt' Textbox component
				100,	# int | float representing numeric value between 100 and 200 in 'Steps' Slider component
				4,	# int | float representing numeric value between 1 and 10 in 'Guidance Scale' Slider component
				api_name="/predict"
    )
    print(result)
    return result

def infer(image_in, chosen_model):
    caption = get_caption(image_in)
    if chosen_model == "MAGNet" :
        magnet_result = get_magnet(caption)
        return magnet_result
    elif chosen_model == "AudioLDM-2" : 
        audioldm_result = get_audioldm(caption)
        return audioldm_result
    elif chosen_model == "AudioGen" :
        audiogen_result = get_audiogen(caption)
        return audiogen_result
    elif chosen_model == "Tango" :
        tango_result = get_tango(caption)
        return tango_result

css="""
#col-container{
    margin: 0 auto;
    max-width: 800px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">
            Image to SFX
        </h2>
        <p style="text-align: center;">
            Compare MAGNet, AudioLDM2 and AudioGen sound effects generation from image caption.
        </p>
        """)
        
        with gr.Column():
            image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
            with gr.Row():
                chosen_model = gr.Dropdown(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen", "Tango"], value="AudioLDM-2")
                submit_btn = gr.Button("Submit")
        with gr.Column():
            audio_o = gr.Audio(label="Audio output")
    
    submit_btn.click(
        fn=infer,
        inputs=[image_in, chosen_model],
        outputs=[audio_o],
        concurrency_limit = 2
    )

demo.queue(max_size=10).launch(debug=True)