File size: 3,190 Bytes
75c11a1
98b9b58
c4569dd
 
724a8c6
70cdcf7
75c11a1
e861ca3
c4569dd
ff2962c
c4569dd
 
e861ca3
c4569dd
 
 
 
 
 
e861ca3
 
 
70cdcf7
c4569dd
3663dc2
5658382
70cdcf7
 
c4569dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48d6e2
c4569dd
 
 
 
 
 
 
e861ca3
 
 
 
 
 
 
 
 
 
 
70cdcf7
e861ca3
 
 
 
 
 
 
 
 
c4569dd
 
 
 
e861ca3
70cdcf7
 
 
 
 
 
 
98b9b58
70cdcf7
 
 
e861ca3
 
 
 
98b9b58
 
e861ca3
c4569dd
 
 
 
70cdcf7
e861ca3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
from gradio.components import Textbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel, PeftConfig
import torch
import datasets

# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model.load_adapter("legacy107/adapter-flan-t5-large-bottleneck-adapter-cpgQA", source="hf")
model.set_active_adapters("question_answering")

peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
peft_config = PeftConfig.from_pretrained(peft_name)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)

max_length = 512
max_target_length = 128

# Load your dataset
dataset = datasets.load_dataset("minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent", split="test")
dataset = dataset.shuffle()
dataset = dataset.select(range(5))


def paraphrase_answer(question, answer):
    # Combine question and context
    input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    return paraphrased_answer


# Define your function to generate answers
def generate_answer(question, context):
    # Combine question and context
    input_text = f"question: {question} context: {context}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        generated_ids = model.generate(input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    # Paraphrase answer
    paraphrased_answer = paraphrase_answer(question, generated_answer)

    return generated_answer, paraphrased_answer


# Define a function to list examples from the dataset
def list_examples():
    examples = []
    for example in dataset:
        context = example["context"]
        question = example["question"]
        examples.append([question, context])
    return examples


# Create a Gradio interface
iface = gr.Interface(
    fn=generate_answer,
    inputs=[
        Textbox(label="Question"),
        Textbox(label="Context")
    ],
    outputs=[
        Textbox(label="Generated Answer"),
        Textbox(label="Natural Answer")
    ],
    examples=list_examples()
)

# Launch the Gradio interface
iface.launch()