Spaces:
Runtime error
Runtime error
File size: 3,190 Bytes
75c11a1 98b9b58 c4569dd 724a8c6 70cdcf7 75c11a1 e861ca3 c4569dd ff2962c c4569dd e861ca3 c4569dd e861ca3 70cdcf7 c4569dd 3663dc2 5658382 70cdcf7 c4569dd f48d6e2 c4569dd e861ca3 70cdcf7 e861ca3 c4569dd e861ca3 70cdcf7 98b9b58 70cdcf7 e861ca3 98b9b58 e861ca3 c4569dd 70cdcf7 e861ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
from gradio.components import Textbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel, PeftConfig
import torch
import datasets
# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model.load_adapter("legacy107/adapter-flan-t5-large-bottleneck-adapter-cpgQA", source="hf")
model.set_active_adapters("question_answering")
peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
peft_config = PeftConfig.from_pretrained(peft_name)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)
max_length = 512
max_target_length = 128
# Load your dataset
dataset = datasets.load_dataset("minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent", split="test")
dataset = dataset.shuffle()
dataset = dataset.select(range(5))
def paraphrase_answer(question, answer):
# Combine question and context
input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return paraphrased_answer
# Define your function to generate answers
def generate_answer(question, context):
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# Paraphrase answer
paraphrased_answer = paraphrase_answer(question, generated_answer)
return generated_answer, paraphrased_answer
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["context"]
question = example["question"]
examples.append([question, context])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
Textbox(label="Question"),
Textbox(label="Context")
],
outputs=[
Textbox(label="Generated Answer"),
Textbox(label="Natural Answer")
],
examples=list_examples()
)
# Launch the Gradio interface
iface.launch()
|