File size: 6,848 Bytes
3936853
31b5a19
 
1e5a262
c48611a
614088e
db74214
eab471f
31b5a19
74a942d
 
31b5a19
 
 
 
 
 
 
 
afff22e
31b5a19
 
 
57455f3
31b5a19
 
 
 
 
6f96de4
 
31b5a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f96de4
31b5a19
 
 
a12fa3b
 
adac0c9
31b5a19
 
 
 
 
 
 
 
a12fa3b
f57ce49
31b5a19
 
 
8541d11
31b5a19
 
a12fa3b
879b028
 
 
 
 
19a3b41
879b028
 
 
19a3b41
879b028
 
 
 
d550acd
879b028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12fa3b
879b028
 
 
19a3b41
879b028
0919f9a
 
31b5a19
 
 
 
0919f9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import appStore.vulnerability_analysis as vulnerability_analysis
import appStore.doc_processing as processing
from utils.uploadAndExample import add_upload
import streamlit as st
from utils.vulnerability_classifier import label_dict
import pandas as pd
import plotly.express as px

st.set_page_config(page_title = 'Vulnerability Analysis', 
                   initial_sidebar_state='expanded', layout="wide") 

with st.sidebar:
    # upload and example doc
    choice = st.sidebar.radio(label = 'Select the Document',
                            help = 'You can upload the document \
                            or else you can try a example document', 
                            options = ('Upload Document', 'Try Example'), 
                            horizontal = True)
    add_upload(choice) 

with st.container():
        st.markdown("<h2 style='text-align: center; color: black;'> Vulnerability Analysis </h2>", unsafe_allow_html=True)
        st.write(' ')

with st.expander("ℹ️ - About this app", expanded=False):
    st.write(
        """
        The Vulnerability Analysis App is an open-source\
        digital tool which aims to assist policy analysts and \
        other users in extracting and filtering references \
        to different vulnerable groups from public documents.
        """)
    # st.write('**Definitions**')

    # st.caption("""
    #         - **Target**: Targets are an intention to achieve a specific result, \
    #         for example, to reduce GHG emissions to a specific level \
    #         (a GHG target) or increase energy efficiency or renewable \
    #         energy to a specific level (a non-GHG target), typically by \ 
    #         a certain date.
    #         - **Economy-wide Target**: Certain Target are applicable \
    #             not at specific Sector level but are applicable at economic \
    #             wide scale.
    #         - **Netzero**: Identifies if its Netzero Target or not.
    #             - 'NET-ZERO': target_labels = ['T_Netzero','T_Netzero_C']
    #             - 'Non Netzero Target': target_labels_neg = ['T_Economy_C',
    #               'T_Economy_Unc','T_Adaptation_C','T_Adaptation_Unc','T_Transport_C',
    #               'T_Transport_O_C','T_Transport_O_Unc','T_Transport_Unc']
    #             - 'Others': Other Targets beside covered above
    #         - **GHG Target**: GHG targets refer to contributions framed as targeted \
    #                           outcomes in GHG terms.
    #             - 'GHG': target_labels_ghg_yes = ['T_Transport_Unc','T_Transport_C']
    #             - 'NON GHG TRANSPORT TARGET': target_labels_ghg_no = ['T_Adaptation_Unc',\
    #                'T_Adaptation_C', 'T_Transport_O_Unc', 'T_Transport_O_C']
    #             - 'OTHERS': Other Targets beside covered above.
    #         - **Conditionality**: An “unconditional contribution” is what countries \
    #          could implement without any conditions and based on their own \
    #          resources and capabilities. A “conditional contribution” is one \
    #          that countries would undertake if international means of support \
    #          are provided, or other conditions are met.
    #         - **Action**: Actions are an intention to implement specific means of \
    #          achieving GHG reductions, usually in forms of concrete projects.
    #         - **Policies and Plans**: Policies are domestic planning documents \
    #           such as policies, regulations or guidlines, and Plans  are broader \
    #          than specific policies or actions, such as a general intention \ 
    #          to ‘improve efficiency’, ‘develop renewable energy’, etc. \
    #         The terms come from the World Bank's NDC platform and WRI's publication.
    #           """)
    
    #c1, c2, c3 =  st.columns([12,1,10])
    #with c1:
    #    image = Image.open('docStore/img/flow.jpg') 
    #    st.image(image)
    #with c3:
    st.write("""
        What Happens in background?
        
        - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
        In this step the document is broken into smaller paragraphs \
        (based on word/sentence count).
        - Step 2: The paragraphs are then fed to the **Vulnerability Classifier** which detects if
        the paragraph contains any references to vulnerable groups.
        """)
                  
    st.write("")

# Define the apps used
apps = [processing.app, vulnerability_analysis.app]

multiplier_val =1/len(apps)
if st.button("Analyze Document"):
    prg = st.progress(0.0)
    for i,func in enumerate(apps):
        func()
        prg.progress((i+1)*multiplier_val)

# If there is data stored
if 'key0' in st.session_state:
    with st.sidebar:
        topic = st.radio(
                        "Which category you want to explore?",
                        (['Vulnerability']))
    
    if topic == 'Vulnerability':

        # Assign dataframe easier name 
        df_vul = st.session_state['key0']
        
        # Header
        st.subheader("Explore here which references to vulnerable groups were identified:")

        # Text 
        num_paragraphs = len(df_vul['Vulnerability Label'])
        num_references = df_vul[df_vul['Vulnerability Label'] != 'Other']
        
        st.markdown(f"""<div style="text-align: justify;"> The document has a
                total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
                In total, we found <span style="color: red;">{num_references}</span>
                to vulnerable groups.</div>""", unsafe_allow_html=True)
    
           
        ### Pie chart
                    
        # Create a df that stores all the labels
        df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])

        # Count how often each label appears in the "Vulnerability Labels" column
        label_counts = st.session_state['key0']['Vulnerability Label'].value_counts().reset_index()
        label_counts.columns = ['Label', 'Count']

        # Merge the label counts with the df_label DataFrame
        df_labels = df_labels.merge(label_counts, on='Label', how='left')

        # Configure graph
        fig = px.pie(df_labels,
                names="Label", 
                values="Count",
                title='Label Counts',
                hover_name="Count",
                color_discrete_sequence=px.colors.qualitative.Plotly
        )
        
        #Show plot
        st.plotly_chart(fig, use_container_width=True)
    
        ### Table 
        st.table(st.session_state['key0'])

       # vulnerability_analysis.vulnerability_display()
    # elif topic == 'Action':
    #     policyaction.action_display()
    # else: 
    #     policyaction.policy_display()
    #st.write(st.session_state.key0)