File size: 2,012 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
class PolynomialDecayLRScheduler(_LRScheduler):
"""Polynomial decay LR scheduler.
Args:
optimizer (Optimizer): Torch optimizer.
warmup_steps (int): Number of warmup steps.
total_steps (int): Total number of steps.
end_lr (float): Final learning rate to achieve over total number of steps.
zero_lr_warmup_steps (int): Number of steps with a learning rate of value 0.
power (float): Decay exponent.
"""
def __init__(self, optimizer: Optimizer, warmup_steps: int, total_steps: int,
end_lr: float = 0., zero_lr_warmup_steps: int = 0, power: float = 1.):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.end_lr = end_lr
self.zero_lr_warmup_steps = zero_lr_warmup_steps
self.power = power
super().__init__(optimizer)
def _get_sched_lr(self, lr: float, step: int):
if self.zero_lr_warmup_steps > 0 and step <= self.zero_lr_warmup_steps:
lr = 0
elif self.warmup_steps > 0 and step <= self.warmup_steps + self.zero_lr_warmup_steps:
lr_ratio = (step - self.zero_lr_warmup_steps) / float(self.warmup_steps)
lr = lr_ratio * lr
elif step >= self.total_steps:
lr = self.end_lr
else:
total_warmup_steps = self.warmup_steps + self.zero_lr_warmup_steps
lr_range = lr - self.end_lr
pct_remaining = 1 - (step - total_warmup_steps) / (self.total_steps - total_warmup_steps)
lr = lr_range * pct_remaining ** self.power + self.end_lr
return lr
def get_lr(self):
return [self._get_sched_lr(base_lr, self.last_epoch) for base_lr in self.base_lrs]
|