File size: 39,227 Bytes
2f23f07
52b383d
 
 
 
 
 
 
 
c2966ec
52b383d
d5f2bf5
52b383d
 
 
d63c6cd
d2bf1cc
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2bf5
 
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2bf5
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
b5c625b
 
 
 
 
 
 
 
94b65fc
b5c625b
 
94b65fc
b5c625b
 
2ba277c
 
 
 
 
03888cd
2ba277c
 
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e9f0b7
1e99cb9
af62f38
1e99cb9
5a70ae3
1e99cb9
 
5a70ae3
 
 
 
 
ef99204
 
5a70ae3
 
 
ef99204
 
5a70ae3
 
 
 
2f23f07
5a70ae3
 
2f23f07
 
af62f38
e5456b5
af62f38
 
e5456b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c240920
 
 
e5456b5
 
af62f38
 
b61fd46
 
 
 
5c941b8
af62f38
bb64240
 
 
 
 
 
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a902b1
d5f2bf5
e174116
2bc17ff
136c53f
c082871
5a70ae3
6ee80eb
95ec167
2c43fbf
2ba90cf
5a70ae3
6ee80eb
e5456b5
 
60e9bf1
c082871
136c53f
7a902b1
136c53f
5490d43
ab34b0c
7654258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import gradio as gr

import argparse
import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function


class RelationModuleMultiScale(torch.nn.Module):

    def __init__(self, img_feature_dim, num_bottleneck, num_frames):
        super(RelationModuleMultiScale, self).__init__()
        self.subsample_num = 3
        self.img_feature_dim = img_feature_dim
        self.scales = [i for i in range(num_frames, 1, -1)]
        self.relations_scales = []
        self.subsample_scales = []
        for scale in self.scales:
            relations_scale = self.return_relationset(num_frames, scale)
            self.relations_scales.append(relations_scale)
            self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
        self.num_frames = num_frames
        self.fc_fusion_scales = nn.ModuleList() # high-tech modulelist
        for i in range(len(self.scales)):
            scale = self.scales[i]
            fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
            self.fc_fusion_scales += [fc_fusion]

    def forward(self, input):
        act_scale_1 = input[:, self.relations_scales[0][0] , :]
        act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
        act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
        act_scale_1 = act_scale_1.unsqueeze(1)
        act_all = act_scale_1.clone()
        for scaleID in range(1, len(self.scales)):
            act_relation_all = torch.zeros_like(act_scale_1)
            num_total_relations = len(self.relations_scales[scaleID])
            num_select_relations = self.subsample_scales[scaleID]
            idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
            for idx in idx_relations_evensample:
                act_relation = input[:, self.relations_scales[scaleID][idx], :]
                act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
                act_relation = self.fc_fusion_scales[scaleID](act_relation)
                act_relation = act_relation.unsqueeze(1)
                act_relation_all += act_relation
            act_all = torch.cat((act_all, act_relation_all), 1)
        return act_all

    def return_relationset(self, num_frames, num_frames_relation):
        import itertools
        return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))


parser = argparse.ArgumentParser()
parser.add_argument('--dataset',  default='Sprite', help='datasets')
parser.add_argument('--data_root', default='dataset', help='root directory for data')
parser.add_argument('--num_class',  type=int, default=15, help='the number of class for jester dataset')
parser.add_argument('--input_type',  default='image', choices=['feature', 'image'], help='the type of input')
parser.add_argument('--src',  default='domain_1', help='source domain')
parser.add_argument('--tar',  default='domain_2', help='target domain')
parser.add_argument('--num_segments', type=int, default=8, help='the number of frame segment')
parser.add_argument('--backbone', type=str, default="dcgan", choices=['dcgan', 'resnet101', 'I3Dpretrain','I3Dfinetune'], help='backbone')
parser.add_argument('--channels', default=3, type=int, help='input channels for image inputs')
parser.add_argument('--add_fc', default=1, type=int, metavar='M', help='number of additional fc layers (excluding the last fc layer) (e.g. 0, 1, 2)')
parser.add_argument('--fc_dim', type=int, default=1024, help='dimension of added fc')
parser.add_argument('--frame_aggregation', type=str, default='trn', choices=[ 'rnn', 'trn'], help='aggregation of frame features (none if baseline_type is not video)')
parser.add_argument('--dropout_rate', default=0.5, type=float, help='dropout ratio for frame-level feature (default: 0.5)')
parser.add_argument('--f_dim', type=int, default=512, help='dim of f')
parser.add_argument('--z_dim', type=int, default=512, help='dimensionality of z_t')
parser.add_argument('--f_rnn_layers', type=int, default=1, help='number of layers (content lstm)')
parser.add_argument('--use_bn', type=str, default='none', choices=['none', 'AdaBN', 'AutoDIAL'], help='normalization-based methods')
parser.add_argument('--prior_sample', type=str, default='random', choices=['random', 'post'], help='how to sample prior')
parser.add_argument('--batch_size', default=128, type=int, help='-batch size')
parser.add_argument('--use_attn', type=str, default='TransAttn', choices=['none', 'TransAttn', 'general'], help='attention-mechanism')
parser.add_argument('--data_threads', type=int, default=5, help='number of data loading threads')
opt = parser.parse_args(args=[])


class GradReverse(Function):
    @staticmethod
    def forward(ctx, x, beta):
        ctx.beta = beta
        return x.view_as(x)

    @staticmethod
    def backward(ctx, grad_output):
        grad_input = grad_output.neg() * ctx.beta
        return grad_input, None   


class TransferVAE_Video(nn.Module):

    def __init__(self, opt):
        super(TransferVAE_Video, self).__init__()
        self.f_dim = opt.f_dim
        self.z_dim = opt.z_dim
        self.fc_dim = opt.fc_dim
        self.channels = opt.channels
        self.input_type = opt.input_type
        self.frames = opt.num_segments
        self.use_bn = opt.use_bn
        self.frame_aggregation = opt.frame_aggregation
        self.batch_size = opt.batch_size
        self.use_attn = opt.use_attn
        self.dropout_rate = opt.dropout_rate
        self.num_class = opt.num_class
        self.prior_sample = opt.prior_sample
        
        if self.input_type == 'image':
            import dcgan_64
            self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
            self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
            self.fc_output_dim = self.fc_dim
        elif self.input_type == 'feature':
            if opt.backbone == 'resnet101':
                model_backnone = getattr(torchvision.models, opt.backbone)(True) # model_test is only used for getting the dim #
                self.input_dim = model_backnone.fc.in_features
            elif opt.backbone == 'I3Dpretrain':
                self.input_dim = 2048
            elif opt.backbone == 'I3Dfinetune':
                self.input_dim = 2048
            self.add_fc = opt.add_fc
            self.enc_fc_layer1 = nn.Linear(self.input_dim, self.fc_dim)
            self.dec_fc_layer1 = nn.Linear(self.fc_dim, self.input_dim)
            self.fc_output_dim = self.fc_dim    

            if self.use_bn == 'shared':
                self.bn_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim)
                self.bn_dec_layer1 = nn.BatchNorm1d(self.input_dim)
            elif self.use_bn == 'separated':
                self.bn_S_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim) 
                self.bn_T_enc_layer1 = nn.BatchNorm1d(self.fc_output_dim) 
                self.bn_S_dec_layer1 = nn.BatchNorm1d(self.input_dim) 
                self.bn_T_dec_layer1 = nn.BatchNorm1d(self.input_dim)
            
            if self.add_fc > 1:
                self.enc_fc_layer2 = nn.Linear(self.fc_dim, self.fc_dim)
                self.dec_fc_layer2 = nn.Linear(self.fc_dim, self.fc_dim)
                self.fc_output_dim = self.fc_dim
                ## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
                if self.use_bn == 'shared':
                    self.bn_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim)
                    self.bn_dec_layer2 = nn.BatchNorm1d(self.fc_dim)
                elif self.use_bn == 'separated':
                    self.bn_S_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim) 
                    self.bn_T_enc_layer2 = nn.BatchNorm1d(self.fc_output_dim)
                    self.bn_S_dec_layer2 = nn.BatchNorm1d(self.fc_dim) 
                    self.bn_T_dec_layer2 = nn.BatchNorm1d(self.fc_dim)
            
            if self.add_fc > 2:
                self.enc_fc_layer3 = nn.Linear(self.fc_dim, self.fc_dim)
                self.dec_fc_layer3 = nn.Linear(self.fc_dim, self.fc_dim)
                self.fc_output_dim = self.fc_dim
                ## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
                if self.use_bn == 'shared':
                    self.bn_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim)
                    self.bn_dec_layer3 = nn.BatchNorm1d(self.fc_dim)
                elif self.use_bn == 'separated':
                    self.bn_S_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim) 
                    self.bn_T_enc_layer3 = nn.BatchNorm1d(self.fc_output_dim)
                    self.bn_S_dec_layer3 = nn.BatchNorm1d(self.fc_dim) 
                    self.bn_T_dec_layer3 = nn.BatchNorm1d(self.fc_dim)
            
            self.z_2_out = nn.Linear(self.z_dim + self.f_dim, self.fc_output_dim)

            
        ## nonlinearity and dropout 
        self.relu = nn.LeakyReLU(0.1)
        self.dropout_f = nn.Dropout(p=self.dropout_rate)
        self.dropout_v = nn.Dropout(p=self.dropout_rate)
        # -------------------------------
     
        ## Disentangle strcuture
        # -------------------------------
        #self.hidden_dim = opt.rnn_size
        self.hidden_dim = opt.z_dim
        self.f_rnn_layers = opt.f_rnn_layers

        # Prior of content is a uniform Gaussian and prior of the dynamics is an LSTM
        self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
        self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)

        self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)

        # POSTERIOR DISTRIBUTION NETWORKS
        # content and motion features share one lstm
        self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
        self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
        self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)

        self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
        # Each timestep is for each z so no reshaping and feature mixing
        self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
         # -------------------------------
        
        ## z_t constraints
        # -------------------------------
        ## adversarial loss for frame features z_t 
        self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
        self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
        
        ## #------ aggregate frame-based features (frame feature --> video feature) ------#
        if self.frame_aggregation == 'rnn': 
            self.bilstm = nn.LSTM(self.z_dim, self.z_dim * 2, self.f_rnn_layers, bidirectional=True, batch_first=True)
            self.feat_aggregated_dim = self.z_dim * 2
        elif self.frame_aggregation == 'trn': # 4. TRN (ECCV 2018) ==> fix segment # for both train/val
            self.num_bottleneck = 256 # 256
            self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
            self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
            self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
            self.feat_aggregated_dim = self.num_bottleneck
            
        ## adversarial loss for video features  
        self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
        self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
        
        ## adversarial loss for each relation of features 
        if self.frame_aggregation == 'trn':
            self.relation_domain_classifier_all = nn.ModuleList()
            for i in range(self.frames-1):
                relation_domain_classifier = nn.Sequential(
                    nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
                    nn.ReLU(),
                    nn.Linear(self.feat_aggregated_dim, 2)
                )
                self.relation_domain_classifier_all += [relation_domain_classifier]
        
        ## classifier for action prediction task 
        self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)
        
        ## classifier for prediction domains
        self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
        self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
        
        ## attention option
        if self.use_attn == 'general':
            self.attn_layer = nn.Sequential(
                nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
                nn.Tanh(),
                nn.Linear(self.feat_aggregated_dim, 1)
                )
    
    def domain_classifier_frame(self, feat, beta):
        feat_fc_domain_frame = GradReverse.apply(feat, beta)
        feat_fc_domain_frame = self.fc_feature_domain_frame(feat_fc_domain_frame)
        feat_fc_domain_frame = self.relu(feat_fc_domain_frame)
        pred_fc_domain_frame = self.fc_classifier_domain_frame(feat_fc_domain_frame)
        return pred_fc_domain_frame
    
    def domain_classifier_video(self, feat_video, beta):
        feat_fc_domain_video = GradReverse.apply(feat_video, beta)
        feat_fc_domain_video = self.fc_feature_domain_video(feat_fc_domain_video)
        feat_fc_domain_video = self.relu(feat_fc_domain_video)
        pred_fc_domain_video = self.fc_classifier_domain_video(feat_fc_domain_video)
        return pred_fc_domain_video
    
    def domain_classifier_latent(self, f):
        feat_fc_domain_latent = self.fc_feature_domain_latent(f)
        feat_fc_domain_latent = self.relu(feat_fc_domain_latent)
        pred_fc_domain_latent = self.fc_classifier_doamin_latent(feat_fc_domain_latent)
        return pred_fc_domain_latent
    
    def domain_classifier_relation(self, feat_relation, beta):
        pred_fc_domain_relation_video = None
        for i in range(len(self.relation_domain_classifier_all)):
            feat_relation_single = feat_relation[:,i,:].squeeze(1) # 128x1x256 --> 128x256
            feat_fc_domain_relation_single = GradReverse.apply(feat_relation_single, beta) # the same beta for all relations (for now)

            pred_fc_domain_relation_single = self.relation_domain_classifier_all[i](feat_fc_domain_relation_single)

            if pred_fc_domain_relation_video is None:
                pred_fc_domain_relation_video = pred_fc_domain_relation_single.view(-1,1,2)
            else:
                pred_fc_domain_relation_video = torch.cat((pred_fc_domain_relation_video, pred_fc_domain_relation_single.view(-1,1,2)), 1)

        pred_fc_domain_relation_video = pred_fc_domain_relation_video.view(-1,2)

        return pred_fc_domain_relation_video
    
    def get_trans_attn(self, pred_domain):
        softmax = nn.Softmax(dim=1)
        logsoftmax = nn.LogSoftmax(dim=1)
        entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
        weights = 1 - entropy
        return weights

    def get_general_attn(self, feat):
        num_segments = feat.size()[1]
        feat = feat.view(-1, feat.size()[-1]) # reshape features: 128x4x256 --> (128x4)x256
        weights = self.attn_layer(feat) # e.g. (128x4)x1
        weights = weights.view(-1, num_segments, weights.size()[-1]) # reshape attention weights: (128x4)x1 --> 128x4x1
        weights = F.softmax(weights, dim=1)  # softmax over segments ==> 128x4x1
        return weights
    
    def get_attn_feat_relation(self, feat_fc, pred_domain, num_segments):
        if self.use_attn == 'TransAttn':
            weights_attn = self.get_trans_attn(pred_domain)
        elif self.use_attn == 'general':
            weights_attn = self.get_general_attn(feat_fc)

        weights_attn = weights_attn.view(-1, num_segments-1, 1).repeat(1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 4 x 256)
        feat_fc_attn = (weights_attn+1) * feat_fc

        return feat_fc_attn, weights_attn[:,:,0]
    
          
    def encode_and_sample_post(self, x):
        if isinstance(x, list):
            conv_x = self.encoder_frame(x[0])
        else:
            conv_x = self.encoder_frame(x)
        
        # pass the bidirectional lstm
        lstm_out, _ = self.z_lstm(conv_x)
        
        # get f:
        backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
        frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
        lstm_out_f = torch.cat((frontal, backward), dim=1)
        f_mean = self.f_mean(lstm_out_f)
        f_logvar = self.f_logvar(lstm_out_f)
        f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)

        # pass to one direction rnn
        features, _ = self.z_rnn(lstm_out)
        z_mean = self.z_mean(features)
        z_logvar = self.z_logvar(features)
        z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)

        if isinstance(x, list):
            f_mean_list = [f_mean]
            f_post_list = [f_post]
            for t in range(1,3,1):
                conv_x = self.encoder_frame(x[t])
                lstm_out, _ = self.z_lstm(conv_x)
                # get f:
                backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
                frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
                lstm_out_f = torch.cat((frontal, backward), dim=1)
                f_mean = self.f_mean(lstm_out_f)
                f_logvar = self.f_logvar(lstm_out_f)
                f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
                f_mean_list.append(f_mean)
                f_post_list.append(f_post)
            f_mean = f_mean_list
            f_post = f_post_list
        # f_mean and f_post are list if triple else not
        return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post
    
    def decoder_frame(self,zf):
        if self.input_type == 'image':
            recon_x = self.decoder(zf)
            return recon_x
        
        if self.input_type == 'feature':
            zf = self.z_2_out(zf) # batch,frames,(z_dim+f_dim) -> batch,frames,fc_output_dim
            zf = self.relu(zf)
            
            if self.add_fc > 2:
                zf = self.dec_fc_layer3(zf)
                if self.use_bn == 'shared':
                    zf = self.bn_dec_layer3(zf)
                elif self.use_bn == 'separated':
                    zf_src = self.bn_S_dec_layer3(zf[:self.batchsize,:,:])
                    zf_tar = self.bn_T_dec_layer3(zf[self.batchsize:,:,:])
                    zf = torch.cat([zf_src,zf_tar],axis=0)
                zf = self.relu(zf)
            
            if self.add_fc > 1:
                zf = self.dec_fc_layer2(zf)
                if self.use_bn == 'shared':
                    zf = self.bn_dec_layer2(zf)
                elif self.use_bn == 'separated':
                    zf_src = self.bn_S_dec_layer2(zf[:self.batchsize,:,:])
                    zf_tar = self.bn_T_dec_layer2(zf[self.batchsize:,:,:])
                    zf = torch.cat([zf_src,zf_tar],axis=0)
                zf = self.relu(zf)
            
            
            zf = self.dec_fc_layer1(zf) 
            if self.use_bn == 'shared':
                zf = self.bn_dec_layer2(zf)
            elif self.use_bn == 'separated':
                zf_src = self.bn_S_dec_layer2(zf[:self.batchsize,:,:])
                zf_tar = self.bn_T_dec_layer2(zf[self.batchsize:,:,:])
                zf = torch.cat([zf_src,zf_tar],axis=0)
            recon_x = self.relu(zf)
            return recon_x

    def encoder_frame(self, x):
        if self.input_type == 'image':
            # input x is list of length Frames [batchsize, channels, size, size]
            # convert it to [batchsize, frames, channels, size, size]
            # [batch_size, frames, channels, size, size] to [batch_size * frames, channels, size, size]
            x_shape = x.shape
            x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
            x_embed = self.encoder(x)[0]
            # to [batch_size,frames,embed_dim]
            
            return x_embed.view(x_shape[0], x_shape[1], -1)
        
        
        if self.input_type == 'feature':
            # input is [batchsize, framew, input_dim]
            x_embed = self.enc_fc_layer1(x)
            ## use batchnormalization or not (if yes whether the source and target share the same batchnormalization)
            if self.use_bn == 'shared':
                x_embed = self.bn_enc_layer1(x_embed)
            elif self.use_bn == 'separated':
                x_embed_src = self.bn_S_enc_layer1(x_embed[:self.batchsize,:,:])
                x_embed_tar = self.bn_T_enc_layer1(x_embed[self.batchsize:,:,:])
                x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
            x_embed = self.relu(x_embed)
 
            if self.add_fc > 1:
                x_embed = self.enc_fc_layer2(x_embed)
                if self.use_bn == 'shared':
                    x_embed = self.bn_enc_layer2(x_embed)
                elif self.use_bn == 'separated':
                    x_embed_src = self.bn_S_enc_layer2(x_embed[:self.batchsize,:,:])
                    x_embed_tar = self.bn_T_enc_layer2(x_embed[self.batchsize:,:,:])
                    x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
                x_embed = self.relu(x_embed)
                
            if self.add_fc > 2:
                x_embed = self.enc_fc_layer3(x_embed)
                if self.use_bn == 'shared':
                    x_embed = self.bn_enc_layer3(x_embed)
                elif self.use_bn == 'separated':
                    x_embed_src = self.bn_S_enc_layer3(x_embed[:self.batchsize,:,:])
                    x_embed_tar = self.bn_T_enc_layer3(x_embed[self.batchsize:,:,:])
                    x_embed = torch.cat([x_embed_src,x_embed_tar],axis=0)
                x_embed = self.relu(x_embed)
                
            ## [batchsize, frame, output_dim]
            return x_embed 
    

    def reparameterize(self, mean, logvar, random_sampling=True):
        # Reparametrization occurs only if random sampling is set to true, otherwise mean is returned
        if random_sampling is True:
            eps = torch.randn_like(logvar)
            std = torch.exp(0.5 * logvar)
            z = mean + eps * std
            return z
        else:
            return mean

    def sample_z_prior_train(self, z_post, random_sampling=True):
        z_out = None  # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
        z_means = None
        z_logvars = None
        batch_size = z_post.shape[0]

        z_t = torch.zeros(batch_size, self.z_dim).cpu()
        h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()

        for i in range(self.frames):
            # two layer LSTM and two one-layer FC
            h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
            h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))

            z_mean_t = self.z_prior_mean(h_t_ly2)
            z_logvar_t = self.z_prior_logvar(h_t_ly2)
            z_prior = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
            if z_out is None:
                # If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
                z_out = z_prior.unsqueeze(1)
                z_means = z_mean_t.unsqueeze(1)
                z_logvars = z_logvar_t.unsqueeze(1)
            else:
                # If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
                z_out = torch.cat((z_out, z_prior.unsqueeze(1)), dim=1)
                z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
                z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
            z_t = z_post[:,i,:]
        return z_means, z_logvars, z_out

    # If random sampling is true, reparametrization occurs else z_t is just set to the mean
    def sample_z(self, batch_size, random_sampling=True):
        z_out = None  # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
        z_means = None
        z_logvars = None

        # All states are initially set to 0, especially z_0 = 0
        z_t = torch.zeros(batch_size, self.z_dim).cpu()
        # z_mean_t = torch.zeros(batch_size, self.z_dim)
        # z_logvar_t = torch.zeros(batch_size, self.z_dim)
        h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        for _ in range(self.frames):
            # h_t, c_t = self.z_prior_lstm(z_t, (h_t, c_t))
            # two layer LSTM and two one-layer FC
            h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
            h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))

            z_mean_t = self.z_prior_mean(h_t_ly2)
            z_logvar_t = self.z_prior_logvar(h_t_ly2)
            z_t = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
            if z_out is None:
                # If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
                z_out = z_t.unsqueeze(1)
                z_means = z_mean_t.unsqueeze(1)
                z_logvars = z_logvar_t.unsqueeze(1)
            else:
                # If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
                z_out = torch.cat((z_out, z_t.unsqueeze(1)), dim=1)
                z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
                z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
        return z_means, z_logvars, z_out

    def forward(self, x, beta):
        # beta [beta_relation, beta_video, beta_frame]
        f_mean, f_logvar, f_post, z_mean_post, z_logvar_post, z_post = self.encode_and_sample_post(x)
        if self.prior_sample == 'random':
            z_mean_prior, z_logvar_prior, z_prior = self.sample_z(z_post.size(0),random_sampling=False)
        elif self.prior_sample == 'post':
            z_mean_prior, z_logvar_prior, z_prior = self.sample_z_prior_train(z_post, random_sampling=False)
        
        
        if isinstance(f_post, list):
            f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
        else:
            f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
        zf = torch.cat((z_post, f_expand), dim=2) # batch,frames,(z_dim+f_dim)
        
        ## reconcstruct x
        recon_x = self.decoder_frame(zf)
        
        ## For constraints on z_post [batch,frame,z_dim] and f_post [batch,f_dim]
        pred_domain_all = [] # list save domain predictions (1) z_post (frame level) (2) each z_post_relation (if trn) (3) z_post (video level) (4)f_post
        
        #1. adversarial on z_post (frame level)
        z_post_feat = z_post.view(-1, z_post.size()[-1]) # e.g. 32 x 5 x 2048 --> 160 x 2048
        z_post_feat = self.dropout_f(z_post_feat)
        pred_fc_domain_frame = self.domain_classifier_frame(z_post_feat, beta[2])
        pred_fc_domain_frame = pred_fc_domain_frame.view((z_post.size(0), self.frames) + pred_fc_domain_frame.size()[-1:])
        pred_domain_all.append(pred_fc_domain_frame)
        
        #2 adversarial on z_post (video level, relation level if trn is used) 
    
        if self.frame_aggregation == 'rnn': 
            self.bilstm.flatten_parameters()
            z_post_video_feat, _ = self.bilstm(z_post)
            backward = z_post_video_feat[:, 0, self.z_dim:2 * self.z_dim]
            frontal = z_post_video_feat[:, self.frames - 1, 0:self.z_dim]
            z_post_video_feat = torch.cat((frontal, backward), dim=1)
            pred_fc_domain_relation = []
            pred_domain_all.append(pred_fc_domain_relation)

        elif self.frame_aggregation == 'trn':  
            z_post_video_relation = self.TRN(z_post) ## [batch, frame-1, self.feat_aggregated_dim]

            # adversarial branch for each relation 
            pred_fc_domain_relation = self.domain_classifier_relation(z_post_video_relation, beta[0])
            pred_domain_all.append(pred_fc_domain_relation.view((z_post.size(0), z_post_video_relation.size()[1]) + pred_fc_domain_relation.size()[-1:]))

            # transferable attention
            if self.use_attn != 'none': # get the attention weighting
                z_post_video_relation_attn, _ = self.get_attn_feat_relation(z_post_video_relation, pred_fc_domain_relation, self.frames)

            # sum up relation features (ignore 1-relation)
            z_post_video_feat = torch.sum(z_post_video_relation_attn, 1)


        z_post_video_feat = self.dropout_v(z_post_video_feat)

        pred_fc_domain_video = self.domain_classifier_video(z_post_video_feat, beta[1])
        pred_fc_domain_video = pred_fc_domain_video.view((z_post.size(0),) + pred_fc_domain_video.size()[-1:])
        pred_domain_all.append(pred_fc_domain_video)
        
        
        #3. video prediction 
        pred_video_class = self.pred_classifier_video(z_post_video_feat)
        
        #4. domain prediction on f
        if isinstance(f_post, list):
            pred_fc_domain_latent = self.domain_classifier_latent(f_post[0]) 
        else:
            pred_fc_domain_latent = self.domain_classifier_latent(f_post) 
        pred_domain_all.append(pred_fc_domain_latent)
        
        return f_mean, f_logvar, f_post, z_mean_post, z_logvar_post, z_post, z_mean_prior, z_logvar_prior, z_prior, recon_x, pred_domain_all, pred_video_class
    

def name2seq(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image[:, :, :3])

    images = np.asarray(images, dtype='f') / 256.0
    images = images.transpose((0, 3, 1, 2))
    images = torch.Tensor(images).unsqueeze(dim=0)
    return images
    
    
def display_gif(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        images.append(imageio.imread(image_filename))

    gif_filename = 'avatar_source.gif'
    return imageio.mimsave(gif_filename, images)


def display_gif_pad(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        image = image[:, :, :3]
        image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
        images.append(image_pad)

    return imageio.mimsave(save_name, images)
    

def display_image(file_name):

    image_filename = file_name + '0' + '.png'
    print(image_filename)
    image = imageio.imread(image_filename)
    imageio.imwrite('image.png', image)
    

def concat(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image)

    gif_filename = 'demo.gif'
    return imageio.mimsave(gif_filename, images)
    

def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
    
    fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
    
    axs[0, 0].imshow(src_orig)
    axs[0, 0].set_title("\n\n\nOriginal\nInput")
    axs[0, 0].axis('off')

    axs[1, 0].imshow(tar_orig)
    axs[1, 0].axis('off')

    axs[0, 1].imshow(src_recon)
    axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
    axs[0, 1].axis('off')

    axs[1, 1].imshow(tar_recon)
    axs[1, 1].axis('off')

    axs[0, 2].imshow(src_Zt)
    axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
    axs[0, 2].axis('off')

    axs[1, 2].imshow(tar_Zt)
    axs[1, 2].axis('off')
    
    axs[0, 3].imshow(tar_Zf_src_Zt)
    axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
    axs[0, 3].axis('off')

    axs[1, 3].imshow(src_Zf_tar_Zt)
    axs[1, 3].axis('off')
    
    plt.subplots_adjust(hspace=0.06, wspace=0.05)
    
    save_name = 'MyPlot_{}.png'.format(frame_id)
    
    plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
    

def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):

    # == Source Avatar ==
    # body
    body_source = '0'
    
    # hair
    if hair_source == "green": hair_source = '0'
    elif hair_source == "yellow": hair_source = '2'
    elif hair_source == "rose": hair_source = '4'
    elif hair_source == "red": hair_source = '7'
    elif hair_source == "wine": hair_source = '8'
    
    # top
    if top_source == "brown": top_source = '0'
    elif top_source == "blue": top_source = '1'
    elif top_source == "white": top_source = '2'
    
    # bottom
    if bottom_source == "white": bottom_source = '0'
    elif bottom_source == "golden": bottom_source = '1'
    elif bottom_source == "red": bottom_source = '2'
    elif bottom_source == "silver": bottom_source = '3'
    
    file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
    file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
    
    
    # == Target Avatar ==
    # body
    body_target = '1'
    
    # hair
    if hair_target == "violet": hair_target = '1'
    elif hair_target == "silver": hair_target = '3'
    elif hair_target == "purple": hair_target = '5'
    elif hair_target == "grey": hair_target = '6'
    elif hair_target == "golden": hair_target = '9'
    
    # top
    if top_target == "grey": top_target = '3'
    elif top_target == "khaki": top_target = '4'
    elif top_target == "linen": top_target = '5'
    elif top_target == "ocre": top_target = '6'
    
    # bottom
    if bottom_target == "denim": bottom_target = '4'
    elif bottom_target == "olive": bottom_target = '5'
    elif bottom_target == "brown": bottom_target = '6'
    
    file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
    file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
    
    
    # == Load Input ==
    images_source = name2seq(file_name_source)
    images_target = name2seq(file_name_target)
    x = torch.cat((images_source, images_target), dim=0)
    
    
    # == Load Model ==
    model = TransferVAE_Video(opt)
    model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
    model.eval()
    
    
    # == Forward ==
    with torch.no_grad():
        f_mean, f_logvar, f_post, z_post_mean, z_post_logvar, z_post, z_prior_mean, z_prior_logvar, z_prior, recon_x, pred_domain_all, pred_video_class = model(x, [0]*3)
     
    src_orig_sample = x[0, :, :, :, :]
    src_recon_sample = recon_x[0, :, :, :, :]
    src_f_post = f_post[0, :].unsqueeze(0)
    src_z_post = z_post[0, :, :].unsqueeze(0)

    tar_orig_sample = x[1, :, :, :, :]
    tar_recon_sample = recon_x[1, :, :, :, :]
    tar_f_post = f_post[1, :].unsqueeze(0)
    tar_z_post = z_post[1, :, :].unsqueeze(0)   
    
    
    # == Visualize ==
    for frame in range(8):
    
        # original frame
        src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # reconstructed frame
        src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zt
        f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
        recon_x_src = model.decoder_frame(zf_src)
        src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_tar = model.decoder_frame(zf_tar)
        tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zf_Zt
        f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
        src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
        tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))

        MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
        
    a = concat('MyPlot_')
    
    return 'demo.gif'


gr.Interface(
    run,
    inputs=[
        gr.Textbox(value="Source Avatar - Human", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
        gr.Textbox(value="Target Avatar - Alien", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
        gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
        gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
        gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
    ],
    outputs=[
        gr.components.Image(type="file", label="Domain Disentanglement"),
    ],
    live=True,
    title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()