File size: 10,368 Bytes
84ac217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from e2b_code_interpreter import Sandbox
secure_sandbox = Sandbox()
secure_sandbox.commands.run("pip install smolagents")
def run_code_raise_errors(secure_sandbox, code: str, verbose: bool = False) -> str:
execution = secure_sandbox.run_code(
code,
envs={'HF_TOKEN': os.getenv('HF_TOKEN')}
)
if execution.error:
execution_logs = "\n".join([str(log) for log in execution.logs.stdout])
logs = execution_logs
logs += execution.error.traceback
raise ValueError(logs)
return "\n".join([str(log) for log in execution.logs.stdout])
alfredo_code = """
import os
import base64
import math
import pytz
import yaml
import pycountry
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.translation import TranslationTool
from tools.best_model_for_task import HFModelDownloadsTool
from tools.rag_transformers import retriever_tool
from transformers import pipeline
from Gradio_UI import GradioUI
from Gradio_UI_with_image import GradioUIImage
from dotenv import load_dotenv
from datetime import datetime
from skimage import io
from PIL import Image
from typing import Optional, Tuple
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain.chains import LLMChain
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
GoogleSearchTool,
HfApiModel,
TransformersModel,
OpenAIServerModel,
load_tool,
Tool,
tool,
ToolCollection
)
# load .env vars
load_dotenv()
# fast prototyping tools
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone formatted as '%m/%d/%y %H:%M:%S'
Args:
timezone (str): A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.now(tz).strftime('%m/%d/%y %H:%M:%S')
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def language_detection(text:str)-> str:
"""Detects the language of the input text using basic xlm-roberta-base-language-detection.
Args:
text: the input message or wording to detect language from.
"""
model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
preds = pipe(text, return_all_scores=True, truncation=True, max_length=128)
if preds:
pred = preds[0]
language_probabilities_dict = {p["label"]: float(p["score"]) for p in pred}
predicted_language_code = max(language_probabilities_dict, key=language_probabilities_dict.get)
tool_prediction_confidence = language_probabilities_dict[predicted_language_code]
confidence_str = f"Tool Confidence: {tool_prediction_confidence}"
predicted_language_code_str = f"Predicted language code (ISO 639): {predicted_language_code}/n{confidence_str}"
try:
predicted_language = pycountry.languages.get(alpha_2=predicted_language_code)
if predicted_language:
predicted_language_str = f"Predicted language: {predicted_language.name}/n{confidence_str}"
return predicted_language_str
return predicted_language_code_str
except Exception as e:
return f"Error mapping country code to name (pycountry): {str(e)}/n{predicted_language_code_str}"
else:
return "None"
@tool
def advanced_image_generation(description:str)->Image.Image:
"""Generates an image using a textual description.
Args:
description: the textual description provided by the user to prompt a text-to-image model
"""
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["image_desc"],
template="Generate a detailed but short prompt (must be less than 900 characters) to generate an image based on the following description: {image_desc}",
)
chain = LLMChain(llm=llm, prompt=prompt)
image_url = DallEAPIWrapper().run(chain.run(description))
image_array = io.imread(image_url)
pil_image = Image.fromarray(image_array)
return pil_image
@tool
def calculate_cargo_travel_time(
origin_coords: Tuple[float, float],
destination_coords: Tuple[float, float],
cruising_speed_kmh: Optional[float] = 750.0, # Average speed for cargo planes
) -> float:
"""
Calculate the travel time for a cargo plane between two points on Earth using great-circle distance.
Args:
origin_coords: Tuple of (latitude, longitude) for the starting point
destination_coords: Tuple of (latitude, longitude) for the destination
cruising_speed_kmh: Optional cruising speed in km/h (defaults to 750 km/h for typical cargo planes)
Returns:
float: The estimated travel time in hours
Example:
>>> # Chicago (41.8781° N, 87.6298° W) to Sydney (33.8688° S, 151.2093° E)
>>> result = calculate_cargo_travel_time((41.8781, -87.6298), (-33.8688, 151.2093))
"""
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
# Extract coordinates
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
# Earth's radius in kilometers
EARTH_RADIUS_KM = 6371.0
# Calculate great-circle distance using the haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (
math.sin(dlat / 2) ** 2
+ math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
# Add 10% to account for non-direct routes and air traffic controls
actual_distance = distance * 1.1
# Calculate flight time
# Add 1 hour for takeoff and landing procedures
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
# Format the results
return round(flight_time, 2)
# telemetry
def initialize_langfuse_opentelemetry_instrumentation():
LANGFUSE_PUBLIC_KEY=os.environ.get("LANGFUSE_PUBLIC_KEY")
LANGFUSE_SECRET_KEY=os.environ.get("LANGFUSE_SECRET_KEY")
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
trace_provider = TracerProvider()
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
initialize_langfuse_opentelemetry_instrumentation()
# load tools from /tools/
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
translation = TranslationTool()
best_model_for_task = HFModelDownloadsTool()
transformers_retriever = retriever_tool
# load tools from smoloagents library
google_web_search = GoogleSearchTool() # provider="serper" (SERPER_API_KEY) or "serpapi" (default)
google_web_search.name = "google_web_search"
duckduckgo_web_search = DuckDuckGoSearchTool()
duckduckgo_web_search.name = "duckduckgo_web_search"
# load tools from hub and langchain
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
image_generation_tool = load_tool("m-ric/text-to-image", trust_remote_code=True) # Tool.from_space("black-forest-labs/FLUX.1-schnell", name="image_generator", description="Generate an image from a prompt")
advanced_search_tool = Tool.from_langchain(load_tools(["searchapi"], allow_dangerous_tools=True)[0]) # serpapi is not real time scrapping
advanced_search_tool.name = "advanced_search_tool"
image_generation_tool_fast = Tool.from_space(
"black-forest-labs/FLUX.1-schnell",
name="image_generator",
description="Generate an image from a prompt"
)
# alternative hf inference endpoint
"""
model = HfApiModel(
max_tokens=2096, # 8096 for manager
temperature=0.5,
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', # same as Qwen/Qwen2.5-Coder-32B-Instruct
custom_role_conversions=None,
)
"""
# also "deepseek-ai/DeepSeek-R1", # and provider="together" (get API key)
ceo_model = OpenAIServerModel(
max_tokens=8096, # 2096 or 5000 for other ligher agents (depending on the task)
temperature=0.5,
model_id="gpt-4o"
)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
tools = [
final_answer,
best_model_for_task,
advanced_search_tool,
google_web_search,
duckduckgo_web_search,
visit_webpage,
get_current_time_in_timezone,
advanced_image_generation,
image_generation_tool,
transformers_retriever,
language_detection,
translation,
calculate_cargo_travel_time
]
agent = CodeAgent(
model=ceo_model,
tools=tools,
max_steps=15, # 15 is good for a light manager, too much when there is no need of a manager
verbosity_level=2,
grammar=None,
planning_interval=5, # (add more steps for heavier reasoning, leave default if not manager)
name="Alfredo",
description="CEO",
prompt_templates=prompt_templates,
additional_authorized_imports=[
"geopandas",
"plotly",
"shapely",
"json",
"pandas",
"numpy",
"requests"
],
)
# agent.push_to_hub('laverdes/Alfredo')
agent.visualize()
GradioUI(agent).launch()
#GradioUIImage(agent).launch()
"""
execution_logs = run_code_raise_errors(secure_sandbox, agent_code)
print(execution_logs)
# todo: clean errors
# todo: the sandbox is to use in a single execution, not gradio and not receiving real-time user input() |