Spaces:
Running
Running
File size: 9,164 Bytes
3bcafb5 6e55cc1 3bcafb5 40e4f0c 3bcafb5 e9c562f 3bcafb5 40e4f0c 3bcafb5 40e4f0c 3bcafb5 fd0629f 3bcafb5 fd0629f 3bcafb5 e9c562f fd0629f e9c562f fd0629f e9c562f fd0629f b5f8bb8 e9c562f 3bcafb5 b5f8bb8 6e55cc1 b5f8bb8 fd0629f 3bcafb5 fd0629f 3bcafb5 fd0629f 3bcafb5 fd0629f b5f8bb8 ad98956 b5f8bb8 ad98956 6e55cc1 b5f8bb8 fd0629f b5f8bb8 6e55cc1 e9c562f fd0629f 6e55cc1 3bcafb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import re
import io
import torch
import zipfile
import requests
import torchaudio
import numpy as np
import gradio as gr
from uroman import uroman
import concurrent.futures
from pydub import AudioSegment
from datasets import load_dataset
from IPython.display import Audio
from scipy.signal import butter, lfilter
from speechbrain.pretrained import EncoderClassifier
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
# Variables
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
dataset_name = "truong-xuan-linh/vi-xvector-speechbrain"
cache_dir="temp/"
default_model_name = "truong-xuan-linh/speecht5-vietnamese-voiceclone-lsvsc"
speaker_id = "speech_dataset_denoised"
# Active device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models and datasets
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
dataset = load_dataset(
dataset_name,
download_mode="force_redownload",
verification_mode="no_checks",
cache_dir=cache_dir,
revision="5ea5e4345258333cbc6d1dd2544f6c658e66a634"
)
dataset = dataset["train"].to_list()
dataset_dict = {}
for rc in dataset:
dataset_dict[rc["speaker_id"]] = rc["embedding"]
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Model utility functions
def remove_special_characters(sentence):
# Use regular expression to keep only letters, periods, and commas
sentence_after_removal = re.sub(r'[^a-zA-Z\s,.\u00C0-\u1EF9]', ' ,', sentence)
return sentence_after_removal
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(waveform)
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=-1)
return speaker_embeddings
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def korean_splitter(string):
pattern = re.compile('[가-힣]+')
matches = pattern.findall(string)
return matches
def uroman_normalization(string):
korean_inputs = korean_splitter(string)
for korean_input in korean_inputs:
korean_roman = uroman(korean_input)
string = string.replace(korean_input, korean_roman)
return string
# Model class
class Model():
def __init__(self, model_name, speaker_url=""):
self.model_name = model_name
self.processor = SpeechT5Processor.from_pretrained(model_name)
self.model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
self.model.eval()
self.speaker_url = speaker_url
if speaker_url:
print(f"download speaker_url")
response = requests.get(speaker_url)
audio_stream = io.BytesIO(response.content)
audio_segment = AudioSegment.from_file(audio_stream, format="wav")
audio_segment = audio_segment.set_channels(1)
audio_segment = audio_segment.set_frame_rate(16000)
audio_segment = audio_segment.set_sample_width(2)
wavform, _ = torchaudio.load(audio_segment.export())
self.speaker_embeddings = create_speaker_embedding(wavform)[0]
else:
self.speaker_embeddings = None
if model_name == "truong-xuan-linh/speecht5-vietnamese-commonvoice" or model_name == "truong-xuan-linh/speecht5-irmvivoice":
self.speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
def inference(self, text, speaker_id=None):
if "voiceclone" in self.model_name:
if not self.speaker_url:
self.speaker_embeddings = torch.tensor(dataset_dict[speaker_id])
with torch.no_grad():
full_speech = []
separators = r";|\.|!|\?|\n"
text = uroman_normalization(text)
text = remove_special_characters(text)
text = text.replace(" ", "▁")
split_texts = re.split(separators, text)
for split_text in split_texts:
if split_text != "▁":
split_text = split_text.lower() + "▁"
print(split_text)
inputs = self.processor.tokenizer(text=split_text, return_tensors="pt")
speech = self.model.generate_speech(inputs["input_ids"], threshold=0.5, speaker_embeddings=self.speaker_embeddings, vocoder=vocoder)
full_speech.append(speech.numpy())
return np.concatenate(full_speech)
@staticmethod
def moving_average(data, window_size):
return np.convolve(data, np.ones(window_size)/window_size, mode='same')
# Initialize model
model = Model(
model_name=default_model_name,
speaker_url=""
)
# Audio processing functions
def read_srt(file_path):
subtitles = []
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
for i in range(0, len(lines), 4):
if i+2 < len(lines):
start_time, end_time = lines[i+1].strip().split('-->')
start_time = start_time.strip()
end_time = end_time.strip()
text = lines[i+2].strip()
subtitles.append((start_time, end_time, text))
return subtitles
def is_valid_srt(file_path):
try:
read_srt(file_path)
return True
except:
return False
def time_to_seconds(time_str):
h, m, s = time_str.split(':')
seconds = int(h) * 3600 + int(m) * 60 + float(s.replace(',', '.'))
return seconds
def generate_audio_with_pause(srt_file_path):
subtitles = read_srt(srt_file_path)
audio_clips = []
for i, (start_time, end_time, text) in enumerate(subtitles):
audio_data = model.inference(text=text, speaker_id=speaker_id)
audio_data = audio_data / np.max(np.abs(audio_data))
audio_clips.append(audio_data)
if i < len(subtitles) - 1:
next_start_time = subtitles[i + 1][0]
pause_duration = time_to_seconds(next_start_time) - time_to_seconds(end_time)
if pause_duration > 0:
pause_samples = int(pause_duration * 16000)
audio_clips.append(np.zeros(pause_samples))
final_audio = np.concatenate(audio_clips)
return final_audio
def srt_to_audio_multi(srt_files):
output_paths = []
invalid_files = []
def process_file(srt_file):
if not is_valid_srt(srt_file.name):
invalid_files.append(srt_file.name)
return None
audio_data = generate_audio_with_pause(srt_file.name)
output_path = os.path.join(cache_dir, f'output_{os.path.basename(srt_file.name)}.wav')
torchaudio.save(output_path, torch.tensor(audio_data).unsqueeze(0), 16000)
return output_path
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process_file, srt_file) for srt_file in srt_files]
for future in concurrent.futures.as_completed(futures):
result = future.result()
if result:
output_paths.append(result)
if invalid_files:
raise gr.Warning(f"Invalid SRT files: {', '.join(invalid_files)}")
return output_paths
def download_all(outputs):
# If no outputs, return None
if not outputs:
raise gr.Warning("No files available for download.")
zip_path = os.path.join(cache_dir, "all_outputs.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in outputs:
zipf.write(file_path, os.path.basename(file_path))
return zip_path
# Initialize model
model = Model(
model_name=default_model_name,
speaker_url=""
)
# UI display
css = '''
#title{text-align: center}
#container{display: flex; justify-content: space-between; align-items: center;}
'''
with gr.Blocks(css=css) as demo:
title = gr.HTML(
"""<h1>SRT to Audio Tool</h1>""",
elem_id="title",
)
with gr.Row(elem_id="container"):
inp = gr.File(
label="Upload SRT files",
file_count="multiple",
type="filepath",
file_types=["srt"],
height=600
)
out = gr.File(
label="Generated Audio Files",
file_count="multiple",
type="filepath",
height=600,
interactive=False
)
btn = gr.Button("Generate")
download_btn = gr.Button("Download All")
download_out = gr.File(
label="Download ZIP",
interactive=False,
height=100
)
btn.click(fn=srt_to_audio_multi, inputs=inp, outputs=out)
download_btn.click(fn=download_all, inputs=out, outputs=download_out)
if __name__ == "__main__":
demo.launch() |