Spaces:
Running
Running
File size: 7,109 Bytes
3bcafb5 40e4f0c 3bcafb5 40e4f0c 3bcafb5 40e4f0c 3bcafb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import re
import io
import torch
import requests
import torchaudio
import numpy as np
import gradio as gr
from uroman import uroman
from pydub import AudioSegment
from datasets import load_dataset
from IPython.display import Audio
from scipy.signal import butter, lfilter
from speechbrain.pretrained import EncoderClassifier
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
# Variables
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
dataset_name = "truong-xuan-linh/vi-xvector-speechbrain"
cache_dir="temp/"
default_model_name = "truong-xuan-linh/speecht5-vietnamese-voiceclone-lsvsc"
speaker_id = "speech_dataset_denoised"
# Active device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models and datasets
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
dataset = load_dataset(
dataset_name,
download_mode="force_redownload",
verification_mode="no_checks",
cache_dir=cache_dir,
revision="5ea5e4345258333cbc6d1dd2544f6c658e66a634"
)
dataset = dataset["train"].to_list()
dataset_dict = {}
for rc in dataset:
dataset_dict[rc["speaker_id"]] = rc["embedding"]
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Model utility functions
def remove_special_characters(sentence):
# Use regular expression to keep only letters, periods, and commas
sentence_after_removal = re.sub(r'[^a-zA-Z\s,.\u00C0-\u1EF9]', ' ,', sentence)
return sentence_after_removal
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(waveform)
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=-1)
return speaker_embeddings
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def korean_splitter(string):
pattern = re.compile('[가-힣]+')
matches = pattern.findall(string)
return matches
def uroman_normalization(string):
korean_inputs = korean_splitter(string)
for korean_input in korean_inputs:
korean_roman = uroman(korean_input)
string = string.replace(korean_input, korean_roman)
return string
# Model class
class Model():
def __init__(self, model_name, speaker_url=""):
self.model_name = model_name
self.processor = SpeechT5Processor.from_pretrained(model_name)
self.model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
self.model.eval()
self.speaker_url = speaker_url
if speaker_url:
print(f"download speaker_url")
response = requests.get(speaker_url)
audio_stream = io.BytesIO(response.content)
audio_segment = AudioSegment.from_file(audio_stream, format="wav")
audio_segment = audio_segment.set_channels(1)
audio_segment = audio_segment.set_frame_rate(16000)
audio_segment = audio_segment.set_sample_width(2)
wavform, _ = torchaudio.load(audio_segment.export())
self.speaker_embeddings = create_speaker_embedding(wavform)[0]
else:
self.speaker_embeddings = None
if model_name == "truong-xuan-linh/speecht5-vietnamese-commonvoice" or model_name == "truong-xuan-linh/speecht5-irmvivoice":
self.speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
def inference(self, text, speaker_id=None):
if "voiceclone" in self.model_name:
if not self.speaker_url:
self.speaker_embeddings = torch.tensor(dataset_dict[speaker_id])
with torch.no_grad():
full_speech = []
separators = r";|\.|!|\?|\n"
text = uroman_normalization(text)
text = remove_special_characters(text)
text = text.replace(" ", "▁")
split_texts = re.split(separators, text)
for split_text in split_texts:
if split_text != "▁":
split_text = split_text.lower() + "▁"
print(split_text)
inputs = self.processor.tokenizer(text=split_text, return_tensors="pt")
speech = self.model.generate_speech(inputs["input_ids"], threshold=0.5, speaker_embeddings=self.speaker_embeddings, vocoder=vocoder)
full_speech.append(speech.numpy())
return np.concatenate(full_speech)
@staticmethod
def moving_average(data, window_size):
return np.convolve(data, np.ones(window_size)/window_size, mode='same')
# Initialize model
model = Model(
model_name=default_model_name,
speaker_url=""
)
# Audio processing functions
def read_srt(file_path):
subtitles = []
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
for i in range(0, len(lines), 4):
if i+2 < len(lines):
start_time, end_time = lines[i+1].strip().split(' --> ')
text = lines[i+2].strip()
subtitles.append((start_time, end_time, text))
return subtitles
def time_to_seconds(time_str):
h, m, s = time_str.split(':')
seconds = int(h) * 3600 + int(m) * 60 + float(s.replace(',', '.'))
return seconds
def generate_audio_with_pause(srt_file_path):
subtitles = read_srt(srt_file_path)
audio_clips = []
for i, (start_time, end_time, text) in enumerate(subtitles):
audio_data = model.inference(text=text, speaker_id=speaker_id)
audio_data = audio_data / np.max(np.abs(audio_data))
audio_clips.append(audio_data)
if i < len(subtitles) - 1:
next_start_time = subtitles[i + 1][0]
pause_duration = time_to_seconds(next_start_time) - time_to_seconds(end_time)
if pause_duration > 0:
pause_samples = int(pause_duration * 16000)
audio_clips.append(np.zeros(pause_samples))
final_audio = np.concatenate(audio_clips)
return final_audio
def srt_to_audio(srt_file):
audio_data = generate_audio_with_pause(srt_file.name)
output_path = os.path.join(cache_dir, 'output.wav')
torchaudio.save(output_path, torch.tensor(audio_data).unsqueeze(0), 16000)
return output_path
# UI display
css = '''
#title{text-align: center}
'''
with gr.Blocks(css=css) as demo:
title = gr.HTML(
"""<h1>SRT to Audio Tool</h1>""",
elem_id="title",
)
inp = gr.File(label="Upload SRT file", file_count="single", type="file")
out = gr.Audio(label="Generated Audio", type="filepath")
inp.change(fn=srt_to_audio, inputs=inp, outputs=out)
if __name__ == "__main__":
demo.launch() |