Spaces:
Runtime error
Runtime error
File size: 4,957 Bytes
cd2465c 3051f7b f217e4d 9ed65fe f217e4d 0f97695 666c6de 79bd7e1 cd2465c 3051f7b 79bd7e1 b1c5569 f217e4d 79bd7e1 f217e4d d5a8945 f217e4d 79bd7e1 f217e4d 79bd7e1 cd2465c 0c5d517 f217e4d b1c5569 f217e4d 64b9ad0 79bd7e1 6ef419c 79bd7e1 4b0fbd1 cd2465c 64b9ad0 79bd7e1 6ef419c 79bd7e1 4b0fbd1 cd2465c bbab3de cd2465c f217e4d d5a8945 b1c5569 f217e4d 50d6862 0f97695 79bd7e1 0f97695 50d6862 cd2465c 79bd7e1 b1c5569 50d6862 cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import spaces
import torch
from clip_slider_pipeline import CLIPSliderXL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoencoderKL
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"))
@spaces.GPU
def generate(slider_x, slider_y, prompt, iterations, steps,
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
avg_diff_x_1, avg_diff_x_2,
avg_diff_y_1, avg_diff_y_2):
# check if avg diff for directions need to be re-calculated
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], iterations=iterations)
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
comma_concepts_x = ', '.join(slider_x)
comma_concepts_y = ', '.join(slider_y)
avg_diff_x_1 = avg_diff[0].cpu()
avg_diff_x_2 = avg_diff[1].cpu()
avg_diff_y_1 = avg_diff_2nd[0].cpu()
avg_diff_y_2 = avg_diff_2nd[1].cpu()
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
@spaces.GPU
def update_x(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
@spaces.GPU
def update_y(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
return image
css = '''
#group {
position: relative;
width: 420px;
height: 420px;
margin-bottom: 20px;
background-color: white
}
#x {
position: absolute;
bottom: 0;
left: 25px;
width: 400px;
}
#y {
position: absolute;
bottom: 20px;
left: 67px;
width: 400px;
transform: rotate(-90deg);
transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
y_concept_1 = gr.State("")
y_concept_2 = gr.State("")
avg_diff_x_1 = gr.State()
avg_diff_x_2 = gr.State()
avg_diff_y_1 = gr.State()
avg_diff_y_2 = gr.State()
with gr.Row():
with gr.Column():
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
prompt = gr.Textbox(label="Prompt")
submit = gr.Button("Submit")
with gr.Group(elem_id="group"):
x = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
output_image = gr.Image(elem_id="image_out")
with gr.Accordion(label="advanced options"):
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
submit.click(fn=generate,
inputs=[slider_x, slider_y, prompt, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
if __name__ == "__main__":
demo.launch() |