Spaces:
Sleeping
Sleeping
File size: 4,534 Bytes
4d6e8c2 c72c8a8 88dad2b c48587c 4d6e8c2 a8c9010 3a14b2c 8ceca59 a8c9010 ca7ae72 4d6e8c2 c48587c 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 8ceca59 4d6e8c2 70f5f26 a8c9010 4d6e8c2 a8c9010 0de3206 ca7ae72 c48587c ca7ae72 c48587c 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.predict import predict
#packages needed for inference
import pickle
import torch
import os
import nltk
from nltk.corpus import stopwords
import spacy
nltk.download('stopwords')
# Get the list of English stop words from NLTK
nltk_stop_words = stopwords.words('english')
# Load the spaCy model for English
nlp = spacy.load("en_core_web_sm")
def process_text(text):
"""
Process text by:
1. Lowercasing
2. Removing punctuation and non-alphanumeric characters
3. Removing stop words
4. Lemmatization
"""
# Step 1: Tokenization & Processing with spaCy
doc = nlp(text.lower()) # Process text with spaCy
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization
processed_tokens = [
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters
for token in doc
if token.text not in nltk_stop_words and token.text not in string.punctuation
]
# Optional: Filter out empty strings resulting from the regex replacement
processed_tokens = " ".join([word for word in processed_tokens if word])
return processed_tokens
router = APIRouter()
DESCRIPTION = "TF-IDF + RF"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
with open(os.path.join(current_dir,"tf-idf_vectorizer.pkl"), "rb") as tfidf_file:
tfidf_vectorizer = pickle.load(tfidf_file)
# Make predictions using the loaded model
predictions = predict(test_dataset,tfidf_vectorizer,os.path.join(current_dir,"random_forest_model.pkl"))
predictions = [LABEL_MAPPING[label] for label in predictions]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |