Spaces:
Build error
Build error
File size: 12,994 Bytes
272de00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import os
import time
import json
import logging
import gc
import torch
from pathlib import Path
from trt_llama_api import TrtLlmAPI
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from collections import defaultdict
from llama_index import ServiceContext
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index import set_global_service_context
from faiss_vector_storage import FaissEmbeddingStorage
from ui.user_interface import MainInterface
app_config_file = 'config\\app_config.json'
model_config_file = 'config\\config.json'
preference_config_file = 'config\\preferences.json'
data_source = 'directory'
def read_config(file_name):
try:
with open(file_name, 'r') as file:
return json.load(file)
except FileNotFoundError:
print(f"The file {file_name} was not found.")
except json.JSONDecodeError:
print(f"There was an error decoding the JSON from the file {file_name}.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
return None
def get_model_config(config, model_name=None):
models = config["models"]["supported"]
selected_model = next((model for model in models if model["name"] == model_name), models[0])
return {
"model_path": os.path.join(os.getcwd(), selected_model["metadata"]["model_path"]),
"engine": selected_model["metadata"]["engine"],
"tokenizer_path": os.path.join(os.getcwd(), selected_model["metadata"]["tokenizer_path"]),
"max_new_tokens": selected_model["metadata"]["max_new_tokens"],
"max_input_token": selected_model["metadata"]["max_input_token"],
"temperature": selected_model["metadata"]["temperature"]
}
def get_data_path(config):
return os.path.join(os.getcwd(), config["dataset"]["path"])
# read the app specific config
app_config = read_config(app_config_file)
streaming = app_config["streaming"]
similarity_top_k = app_config["similarity_top_k"]
is_chat_engine = app_config["is_chat_engine"]
embedded_model_name = app_config["embedded_model"]
embedded_model = os.path.join(os.getcwd(), "model", embedded_model_name)
embedded_dimension = app_config["embedded_dimension"]
# read model specific config
selected_model_name = None
selected_data_directory = None
config = read_config(model_config_file)
if os.path.exists(preference_config_file):
perf_config = read_config(preference_config_file)
selected_model_name = perf_config.get('models', {}).get('selected')
selected_data_directory = perf_config.get('dataset', {}).get('path')
if selected_model_name == None:
selected_model_name = config["models"].get("selected")
model_config = get_model_config(config, selected_model_name)
trt_engine_path = model_config["model_path"]
trt_engine_name = model_config["engine"]
tokenizer_dir_path = model_config["tokenizer_path"]
data_dir = config["dataset"]["path"] if selected_data_directory == None else selected_data_directory
# create trt_llm engine object
llm = TrtLlmAPI(
model_path=model_config["model_path"],
engine_name=model_config["engine"],
tokenizer_dir=model_config["tokenizer_path"],
temperature=model_config["temperature"],
max_new_tokens=model_config["max_new_tokens"],
context_window=model_config["max_input_token"],
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=False
)
# create embeddings model object
embed_model = HuggingFaceEmbeddings(model_name=embedded_model)
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model,
context_window=model_config["max_input_token"], chunk_size=512,
chunk_overlap=200)
set_global_service_context(service_context)
def generate_inferance_engine(data, force_rewrite=False):
"""
Initialize and return a FAISS-based inference engine.
Args:
data: The directory where the data for the inference engine is located.
force_rewrite (bool): If True, force rewriting the index.
Returns:
The initialized inference engine.
Raises:
RuntimeError: If unable to generate the inference engine.
"""
try:
global engine
faiss_storage = FaissEmbeddingStorage(data_dir=data,
dimension=embedded_dimension)
faiss_storage.initialize_index(force_rewrite=force_rewrite)
engine = faiss_storage.get_engine(is_chat_engine=is_chat_engine, streaming=streaming,
similarity_top_k=similarity_top_k)
except Exception as e:
raise RuntimeError(f"Unable to generate the inference engine: {e}")
# load the vectorstore index
generate_inferance_engine(data_dir)
def call_llm_streamed(query):
partial_response = ""
response = llm.stream_complete(query)
for token in response:
partial_response += token.delta
yield partial_response
def chatbot(query, chat_history, session_id):
if data_source == "nodataset":
yield llm.complete(query).text
return
if is_chat_engine:
response = engine.chat(query)
else:
response = engine.query(query)
# Aggregate scores by file
file_scores = defaultdict(float)
for node in response.source_nodes:
metadata = node.metadata
if 'filename' in metadata:
file_name = metadata['filename']
file_scores[file_name] += node.score
# Find the file with the highest aggregated score
highest_aggregated_score_file = None
if file_scores:
highest_aggregated_score_file = max(file_scores, key=file_scores.get)
file_links = []
seen_files = set() # Set to track unique file names
# Generate links for the file with the highest aggregated score
if highest_aggregated_score_file:
abs_path = Path(os.path.join(os.getcwd(), highest_aggregated_score_file.replace('\\', '/')))
file_name = os.path.basename(abs_path)
file_name_without_ext = abs_path.stem
if file_name not in seen_files: # Ensure the file hasn't already been processed
if data_source == 'directory':
file_link = file_name
else:
exit("Wrong data_source type")
file_links.append(file_link)
seen_files.add(file_name) # Mark file as processed
response_txt = str(response)
if file_links:
response_txt += "<br>Reference files:<br>" + "<br>".join(file_links)
if not highest_aggregated_score_file: # If no file with a high score was found
response_txt = llm.complete(query).text
yield response_txt
def stream_chatbot(query, chat_history, session_id):
if data_source == "nodataset":
for response in call_llm_streamed(query):
yield response
return
if is_chat_engine:
response = engine.stream_chat(query)
else:
response = engine.query(query)
partial_response = ""
if len(response.source_nodes) == 0:
response = llm.stream_complete(query)
for token in response:
partial_response += token.delta
yield partial_response
else:
# Aggregate scores by file
file_scores = defaultdict(float)
for node in response.source_nodes:
if 'filename' in node.metadata:
file_name = node.metadata['filename']
file_scores[file_name] += node.score
# Find the file with the highest aggregated score
highest_score_file = max(file_scores, key=file_scores.get, default=None)
file_links = []
seen_files = set()
for token in response.response_gen:
partial_response += token
yield partial_response
time.sleep(0.05)
time.sleep(0.2)
if highest_score_file:
abs_path = Path(os.path.join(os.getcwd(), highest_score_file.replace('\\', '/')))
file_name = os.path.basename(abs_path)
file_name_without_ext = abs_path.stem
if file_name not in seen_files: # Check if file_name is already seen
if data_source == 'directory':
file_link = file_name
else:
exit("Wrong data_source type")
file_links.append(file_link)
seen_files.add(file_name) # Add file_name to the set
if file_links:
partial_response += "<br>Reference files:<br>" + "<br>".join(file_links)
yield partial_response
# call garbage collector after inference
torch.cuda.empty_cache()
gc.collect()
interface = MainInterface(chatbot=stream_chatbot if streaming else chatbot, streaming=streaming)
def on_shutdown_handler(session_id):
global llm, service_context, embed_model, faiss_storage, engine
import gc
if llm is not None:
llm.unload_model()
del llm
# Force a garbage collection cycle
gc.collect()
interface.on_shutdown(on_shutdown_handler)
def reset_chat_handler(session_id):
global faiss_storage
global engine
print('reset chat called', session_id)
if is_chat_engine == True:
faiss_storage.reset_engine(engine)
interface.on_reset_chat(reset_chat_handler)
def on_dataset_path_updated_handler(source, new_directory, video_count, session_id):
print('data set path updated to ', source, new_directory, video_count, session_id)
global engine
global data_dir
if source == 'directory':
if data_dir != new_directory:
data_dir = new_directory
generate_inferance_engine(data_dir)
interface.on_dataset_path_updated(on_dataset_path_updated_handler)
def on_model_change_handler(model, metadata, session_id):
model_path = os.path.join(os.getcwd(), metadata.get('model_path', None))
engine_name = metadata.get('engine', None)
tokenizer_path = os.path.join(os.getcwd(), metadata.get('tokenizer_path', None))
if not model_path or not engine_name:
print("Model path or engine not provided in metadata")
return
global llm, embedded_model, engine, data_dir, service_context
if llm is not None:
llm.unload_model()
del llm
llm = TrtLlmAPI(
model_path=model_path,
engine_name=engine_name,
tokenizer_dir=tokenizer_path,
temperature=metadata.get('temperature', 0.1),
max_new_tokens=metadata.get('max_new_tokens', 512),
context_window=metadata.get('max_input_token', 512),
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=False
)
service_context = ServiceContext.from_service_context(service_context=service_context, llm=llm)
set_global_service_context(service_context)
generate_inferance_engine(data_dir)
interface.on_model_change(on_model_change_handler)
def on_dataset_source_change_handler(source, path, session_id):
global data_source, data_dir, engine
data_source = source
if data_source == "nodataset":
print(' No dataset source selected', session_id)
return
print('dataset source updated ', source, path, session_id)
if data_source == "directory":
data_dir = path
else:
print("Wrong data type selected")
generate_inferance_engine(data_dir)
interface.on_dataset_source_updated(on_dataset_source_change_handler)
def handle_regenerate_index(source, path, session_id):
generate_inferance_engine(path, force_rewrite=True)
print("on regenerate index", source, path, session_id)
interface.on_regenerate_index(handle_regenerate_index)
# render the interface
interface.render()
|