File size: 12,994 Bytes
272de00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import os
import time
import json
import logging
import gc
import torch
from pathlib import Path
from trt_llama_api import TrtLlmAPI
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from collections import defaultdict
from llama_index import ServiceContext
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index import set_global_service_context
from faiss_vector_storage import FaissEmbeddingStorage
from ui.user_interface import MainInterface

app_config_file = 'config\\app_config.json'
model_config_file = 'config\\config.json'
preference_config_file = 'config\\preferences.json'
data_source = 'directory'

def read_config(file_name):
    try:
        with open(file_name, 'r') as file:
            return json.load(file)
    except FileNotFoundError:
        print(f"The file {file_name} was not found.")
    except json.JSONDecodeError:
        print(f"There was an error decoding the JSON from the file {file_name}.")
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
    return None

def get_model_config(config, model_name=None):
    models = config["models"]["supported"]
    selected_model = next((model for model in models if model["name"] == model_name), models[0])
    return {
        "model_path": os.path.join(os.getcwd(), selected_model["metadata"]["model_path"]),
        "engine": selected_model["metadata"]["engine"],
        "tokenizer_path": os.path.join(os.getcwd(), selected_model["metadata"]["tokenizer_path"]),
        "max_new_tokens": selected_model["metadata"]["max_new_tokens"],
        "max_input_token": selected_model["metadata"]["max_input_token"],
        "temperature": selected_model["metadata"]["temperature"]
    }

def get_data_path(config):
    return os.path.join(os.getcwd(), config["dataset"]["path"])

# read the app specific config
app_config = read_config(app_config_file)
streaming = app_config["streaming"]
similarity_top_k = app_config["similarity_top_k"]
is_chat_engine = app_config["is_chat_engine"]
embedded_model_name = app_config["embedded_model"]
embedded_model = os.path.join(os.getcwd(), "model", embedded_model_name)
embedded_dimension = app_config["embedded_dimension"]

# read model specific config
selected_model_name = None
selected_data_directory = None
config = read_config(model_config_file)
if os.path.exists(preference_config_file):
    perf_config = read_config(preference_config_file)
    selected_model_name = perf_config.get('models', {}).get('selected')
    selected_data_directory = perf_config.get('dataset', {}).get('path')

if selected_model_name == None:
    selected_model_name = config["models"].get("selected")

model_config = get_model_config(config, selected_model_name)
trt_engine_path = model_config["model_path"]
trt_engine_name = model_config["engine"]
tokenizer_dir_path = model_config["tokenizer_path"]
data_dir = config["dataset"]["path"] if selected_data_directory == None else selected_data_directory

# create trt_llm engine object
llm = TrtLlmAPI(
    model_path=model_config["model_path"],
    engine_name=model_config["engine"],
    tokenizer_dir=model_config["tokenizer_path"],
    temperature=model_config["temperature"],
    max_new_tokens=model_config["max_new_tokens"],
    context_window=model_config["max_input_token"],
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    verbose=False
)

# create embeddings model object
embed_model = HuggingFaceEmbeddings(model_name=embedded_model)
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model,
                                               context_window=model_config["max_input_token"], chunk_size=512,
                                               chunk_overlap=200)
set_global_service_context(service_context)


def generate_inferance_engine(data, force_rewrite=False):
    """
       Initialize and return a FAISS-based inference engine.

       Args:
           data: The directory where the data for the inference engine is located.
           force_rewrite (bool): If True, force rewriting the index.

       Returns:
           The initialized inference engine.

       Raises:
           RuntimeError: If unable to generate the inference engine.
       """
    try:
        global engine
        faiss_storage = FaissEmbeddingStorage(data_dir=data,
                                              dimension=embedded_dimension)
        faiss_storage.initialize_index(force_rewrite=force_rewrite)
        engine = faiss_storage.get_engine(is_chat_engine=is_chat_engine, streaming=streaming,
                                          similarity_top_k=similarity_top_k)
    except Exception as e:
        raise RuntimeError(f"Unable to generate the inference engine: {e}")


# load the vectorstore index
generate_inferance_engine(data_dir)

def call_llm_streamed(query):
    partial_response = ""
    response = llm.stream_complete(query)
    for token in response:
        partial_response += token.delta
        yield partial_response

def chatbot(query, chat_history, session_id):
    if data_source == "nodataset":
        yield llm.complete(query).text
        return

    if is_chat_engine:
        response = engine.chat(query)
    else:
        response = engine.query(query)

    # Aggregate scores by file
    file_scores = defaultdict(float)
    for node in response.source_nodes:
        metadata = node.metadata
        if 'filename' in metadata:
            file_name = metadata['filename']
            file_scores[file_name] += node.score

    # Find the file with the highest aggregated score
    highest_aggregated_score_file = None
    if file_scores:
        highest_aggregated_score_file = max(file_scores, key=file_scores.get)

    file_links = []
    seen_files = set()  # Set to track unique file names

    # Generate links for the file with the highest aggregated score
    if highest_aggregated_score_file:
        abs_path = Path(os.path.join(os.getcwd(), highest_aggregated_score_file.replace('\\', '/')))
        file_name = os.path.basename(abs_path)
        file_name_without_ext = abs_path.stem
        if file_name not in seen_files:  # Ensure the file hasn't already been processed
            if data_source == 'directory':
                file_link = file_name
            else:
                exit("Wrong data_source type")
            file_links.append(file_link)
            seen_files.add(file_name)  # Mark file as processed

    response_txt = str(response)
    if file_links:
        response_txt += "<br>Reference files:<br>" + "<br>".join(file_links)
    if not highest_aggregated_score_file:  # If no file with a high score was found
        response_txt = llm.complete(query).text
    yield response_txt

def stream_chatbot(query, chat_history, session_id):
    if data_source == "nodataset":
        for response in call_llm_streamed(query):
            yield response
        return

    if is_chat_engine:
        response = engine.stream_chat(query)
    else:
        response = engine.query(query)

    partial_response = ""
    if len(response.source_nodes) == 0:
        response = llm.stream_complete(query)
        for token in response:
            partial_response += token.delta
            yield partial_response
    else:
        # Aggregate scores by file
        file_scores = defaultdict(float)
        for node in response.source_nodes:
            if 'filename' in node.metadata:
                file_name = node.metadata['filename']
                file_scores[file_name] += node.score

        # Find the file with the highest aggregated score
        highest_score_file = max(file_scores, key=file_scores.get, default=None)

        file_links = []
        seen_files = set()
        for token in response.response_gen:
            partial_response += token
            yield partial_response
            time.sleep(0.05)

        time.sleep(0.2)

        if highest_score_file:
            abs_path = Path(os.path.join(os.getcwd(), highest_score_file.replace('\\', '/')))
            file_name = os.path.basename(abs_path)
            file_name_without_ext = abs_path.stem
            if file_name not in seen_files:  # Check if file_name is already seen
                if data_source == 'directory':
                    file_link = file_name
                else:
                    exit("Wrong data_source type")
                file_links.append(file_link)
                seen_files.add(file_name)  # Add file_name to the set

        if file_links:
            partial_response += "<br>Reference files:<br>" + "<br>".join(file_links)
        yield partial_response

    # call garbage collector after inference
    torch.cuda.empty_cache()
    gc.collect()

interface = MainInterface(chatbot=stream_chatbot if streaming else chatbot, streaming=streaming)

def on_shutdown_handler(session_id):
    global llm, service_context, embed_model, faiss_storage, engine
    import gc
    if llm is not None:
        llm.unload_model()
        del llm
    # Force a garbage collection cycle
    gc.collect()


interface.on_shutdown(on_shutdown_handler)


def reset_chat_handler(session_id):
    global faiss_storage
    global engine
    print('reset chat called', session_id)
    if is_chat_engine == True:
        faiss_storage.reset_engine(engine)


interface.on_reset_chat(reset_chat_handler)


def on_dataset_path_updated_handler(source, new_directory, video_count, session_id):
    print('data set path updated to ', source, new_directory, video_count, session_id)
    global engine
    global data_dir
    if source == 'directory':
        if data_dir != new_directory:
            data_dir = new_directory
            generate_inferance_engine(data_dir)

interface.on_dataset_path_updated(on_dataset_path_updated_handler)

def on_model_change_handler(model, metadata, session_id):
    model_path = os.path.join(os.getcwd(), metadata.get('model_path', None))
    engine_name = metadata.get('engine', None)
    tokenizer_path = os.path.join(os.getcwd(), metadata.get('tokenizer_path', None))

    if not model_path or not engine_name:
        print("Model path or engine not provided in metadata")
        return

    global llm, embedded_model, engine, data_dir, service_context

    if llm is not None:
        llm.unload_model()
        del llm

    llm = TrtLlmAPI(
        model_path=model_path,
        engine_name=engine_name,
        tokenizer_dir=tokenizer_path,
        temperature=metadata.get('temperature', 0.1),
        max_new_tokens=metadata.get('max_new_tokens', 512),
        context_window=metadata.get('max_input_token', 512),
        messages_to_prompt=messages_to_prompt,
        completion_to_prompt=completion_to_prompt,
        verbose=False
    )
    service_context = ServiceContext.from_service_context(service_context=service_context, llm=llm)
    set_global_service_context(service_context)
    generate_inferance_engine(data_dir)


interface.on_model_change(on_model_change_handler)


def on_dataset_source_change_handler(source, path, session_id):

    global data_source, data_dir, engine
    data_source = source

    if data_source == "nodataset":
        print(' No dataset source selected', session_id)
        return
    
    print('dataset source updated ', source, path, session_id)
    
    if data_source == "directory":
        data_dir = path
    else:
        print("Wrong data type selected")
    generate_inferance_engine(data_dir)

interface.on_dataset_source_updated(on_dataset_source_change_handler)

def handle_regenerate_index(source, path, session_id):
    generate_inferance_engine(path, force_rewrite=True)
    print("on regenerate index", source, path, session_id)

interface.on_regenerate_index(handle_regenerate_index)
# render the interface
interface.render()