1
File size: 7,837 Bytes
b28fb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697a4fe
 
b28fb05
 
 
 
 
 
 
 
 
697a4fe
 
b28fb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import sys
from eval_dataset import SingleRegionCaptionDataset
from segment_anything import sam_model_registry, SamPredictor
import gradio as gr
import numpy as np
import cv2
import base64
import torch
from PIL import Image
import io
import argparse
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from transformers import AutoModel, AutoProcessor, GenerationConfig
from transformers import SamModel, SamProcessor
try:
    from spaces import GPU
except ImportError:
    print("Spaces not installed, using dummy GPU decorator")
    def GPU(*args, **kwargs):
        def decorator(fn):
            return fn
        return decorator

# Load SAM model
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
print("sam ready")
model_path = "HaochenWang/GAR-1B"
# Initialize the captioning model and processor
model = AutoModel.from_pretrained(
    model_path, 
    trust_remote_code=True, 
    torch_dtype=torch.bfloat16,
    device_map="cpu",
    use_flash_attn=False
).eval()

processor = AutoProcessor.from_pretrained(
    model_path,
    trust_remote_code=True,
)

@GPU(duration=75)
def image_to_sam_embedding(base64_image):
    try:
        # Decode base64 string to bytes
        image_bytes = base64.b64decode(base64_image)
        
        # Convert bytes to PIL Image
        image = Image.open(io.BytesIO(image_bytes))
        
        # Process image with SAM processor
        inputs = sam_processor(image, return_tensors="pt").to(device)
        
        # Get image embedding
        with torch.no_grad():
            image_embedding = sam_model.get_image_embeddings(inputs["pixel_values"])
        
        # Convert to CPU and numpy
        image_embedding = image_embedding.cpu().numpy()
        
        # Encode the embedding as base64
        embedding_bytes = image_embedding.tobytes()
        embedding_base64 = base64.b64encode(embedding_bytes).decode('utf-8')
        
        return embedding_base64
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        raise gr.Error(f"Failed to process image: {str(e)}")

@GPU(duration=75)
def describe(image_base64: str, mask_base64: str, query: str):
    # Convert base64 to PIL Image
    image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
    img = Image.open(io.BytesIO(image_bytes))
    mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
    mask = Image.open(io.BytesIO(mask_bytes))
    mask = np.array(mask.convert('L'))
    
     
    prompt_number = model.config.prompt_numbers
    prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + ["<NO_Prompt>"]

    # Assuming mask is given as a numpy array and the image is a PIL image
    dataset = SingleRegionCaptionDataset(
        image=img,
        mask=mask,
        processor=processor,
        prompt_number=prompt_number,
        visual_prompt_tokens=prompt_tokens,
        data_dtype=torch.bfloat16,
    )

    data_sample = dataset[0]

    # Generate the caption
    with torch.no_grad():
        generate_ids = model.generate(
            **data_sample,
            generation_config=GenerationConfig(
                max_new_tokens=1024,
                # do_sample= False,
                eos_token_id=processor.tokenizer.eos_token_id,
                pad_token_id=processor.tokenizer.pad_token_id,
            ),
            return_dict=True,
        )
    
    output_caption = processor.tokenizer.decode(generate_ids.sequences[0], skip_special_tokens=True).strip()

    
    # Stream the tokens
    text = ""
    for token in output_caption:
        text += token
        yield text
    
@GPU(duration=75)
def describe_without_streaming(image_base64: str, mask_base64: str, query: str):
    # Convert base64 to PIL Image
    image_bytes = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
    img = Image.open(io.BytesIO(image_bytes))
    mask_bytes = base64.b64decode(mask_base64.split(',')[1] if ',' in mask_base64 else mask_base64)
    mask = Image.open(io.BytesIO(mask_bytes))
    mask = np.array(mask.convert('L'))
    prompt_number = model.config.prompt_numbers
    prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + ["<NO_Prompt>"]

    # Assuming mask is given as a numpy array and the image is a PIL image
    dataset = SingleRegionCaptionDataset(
        image=img,
        mask=mask,
        processor=processor,
        prompt_number=prompt_number,
        visual_prompt_tokens=prompt_tokens,
        data_dtype=torch.bfloat16,
    )

    data_sample = dataset[0]

    # Generate the caption
    with torch.no_grad():
        generate_ids = model.generate(
            **data_sample,
            generation_config=GenerationConfig(
                max_new_tokens=1024,
                # do_sample=False,
                eos_token_id=processor.tokenizer.eos_token_id,
                pad_token_id=processor.tokenizer.pad_token_id,
            ),
            return_dict=True,
        )
    
    output_caption = processor.tokenizer.decode(generate_ids.sequences[0], skip_special_tokens=True).strip()

    
    return output_caption

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Describe Anything gradio demo")
    parser.add_argument("--server_addr", "--host", type=str, default=None, help="The server address to listen on.")
    parser.add_argument("--server_port", "--port", type=int, default=None, help="The port to listen on.")
    parser.add_argument("--model-path", type=str, default="HaochenWang/GAR-1B", help="Path to the model checkpoint")
    parser.add_argument("--prompt-mode", type=str, default="full+focal_crop", help="Prompt mode")
    parser.add_argument("--conv-mode", type=str, default="v1", help="Conversation mode")
    parser.add_argument("--temperature", type=float, default=0.2, help="Sampling temperature")
    parser.add_argument("--top_p", type=float, default=0.5, help="Top-p for sampling")

    args = parser.parse_args()


    # Create Gradio interface
    with gr.Blocks() as demo:
        gr.Interface(
            fn=image_to_sam_embedding,
            inputs=gr.Textbox(label="Image Base64"),
            outputs=gr.Textbox(label="Embedding Base64"),
            title="Image Embedding Generator",
            api_name="image_to_sam_embedding"
        )
        gr.Interface(
            fn=describe,
            inputs=[
                gr.Textbox(label="Image Base64"),
                gr.Text(label="Mask Base64"),
                gr.Text(label="Prompt")
            ],
            outputs=[
                gr.Text(label="Description")
            ],
            title="Mask Description Generator",
            api_name="describe"
        )
        gr.Interface(
            fn=describe_without_streaming,
            inputs=[
                gr.Textbox(label="Image Base64"),
                gr.Text(label="Mask Base64"),
                gr.Text(label="Prompt")
            ],
            outputs=[
                gr.Text(label="Description")
            ],
            title="Mask Description Generator (Non-Streaming)",
            api_name="describe_without_streaming"
        )

    demo._block_thread = demo.block_thread
    demo.block_thread = lambda: None
    demo.launch(
        share=True,
        server_name=args.server_addr,
        server_port=args.server_port,
        ssr_mode=False,
    )

    for route in demo.app.routes:
        if route.path == "/":
            demo.app.routes.remove(route)
    demo.app.mount("/", StaticFiles(directory="dist", html=True), name="demo")

    demo._block_thread()