Spaces:
Sleeping
Sleeping
File size: 7,809 Bytes
f75ccae e27df4e 2ad5136 f75ccae e27df4e f75ccae e27df4e f75ccae a880965 f75ccae a880965 f75ccae e27df4e f75ccae a880965 e27df4e a880965 e27df4e f75ccae e27df4e f75ccae af12306 f75ccae e27df4e f75ccae a880965 f75ccae e27df4e a880965 e27df4e a880965 e27df4e f75ccae e27df4e f75ccae e27df4e f75ccae e27df4e f75ccae a880965 f75ccae a880965 f75ccae e27df4e f75ccae e27df4e f75ccae a880965 f75ccae e27df4e f75ccae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import gradio as gr
from gradio.components import Textbox, Button, Slider, Checkbox
from AinaTheme import theme
from urllib.error import HTTPError
from rag import RAG
from utils import setup
MAX_NEW_TOKENS = 700
SHOW_MODEL_PARAMETERS_IN_UI = os.environ.get("SHOW_MODEL_PARAMETERS_IN_UI", default="False") == "True"
import logging
logging.basicConfig(level=logging.INFO, format='[%(asctime)s][%(name)s][%(levelname)s] - %(message)s')
setup()
print("Loading RAG model...")
print("Show model parameters in UI: ", SHOW_MODEL_PARAMETERS_IN_UI)
# Load the RAG model
rag = RAG(
vs_hf_repo_path=os.getenv("VS_REPO_NAME"),
vectorstore_path=os.getenv("VECTORSTORE_PATH"),
hf_token=os.getenv("HF_TOKEN"),
embeddings_model=os.getenv("EMBEDDINGS"),
model_name=os.getenv("MODEL"),
rerank_model=os.getenv("RERANK_MODEL"),
rerank_number_contexts=int(os.getenv("RERANK_NUMBER_CONTEXTS"))
)
def generate(prompt, model_parameters):
try:
output, context, source = rag.get_response(prompt, model_parameters)
return output, context, source
except HTTPError as err:
if err.code == 400:
gr.Warning(
"The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET."
)
except:
gr.Warning(
"Inference endpoint is not available right now. Please try again later."
)
return None, None, None
def submit_input(input_, num_chunks, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature):
"""
Function to handle the input and call the RAG model for inference.
"""
if input_.strip() == "":
gr.Warning("Not possible to inference an empty input")
return None
model_parameters = {
"NUM_CHUNKS": num_chunks,
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"top_p": top_p,
"do_sample": do_sample,
"temperature": temperature
}
print("Model parameters: ", model_parameters)
output, context, source = generate(input_, model_parameters)
sources_markup = ""
for url in source:
sources_markup += f'<a href="{url}" target="_blank">{url}</a><br>'
return output, sources_markup, context
# return output.strip(), sources_markup, context
def change_interactive(text):
if len(text) == 0:
return gr.update(interactive=True), gr.update(interactive=False)
return gr.update(interactive=True), gr.update(interactive=True)
def clear():
return (
None,
None,
None,
None,
gr.Number(value=5, label="Num. Retrieved Chunks", minimum=1, interactive=True)
)
def gradio_app():
with gr.Blocks(theme=theme) as demo:
# App Description
# =====================================================================================================================================
with gr.Row():
with gr.Column():
gr.Markdown("""# Demo de Retrieval (only) Viquipèdia""")
with gr.Row(equal_height=False):
# User Input
# =====================================================================================================================================
with gr.Column(scale=2, variant="panel"):
input_ = Textbox(
lines=5,
label="Input",
placeholder="Qui va crear la guerra de les Galaxies ?",
)
with gr.Row(variant="default"):
clear_btn = Button("Clear",)
submit_btn = Button("Submit", variant="primary", interactive=False)
with gr.Row(variant="default"):
num_chunks = gr.Number(value=5, label="Num. Retrieved Chunks", minimum=1, interactive=True)
# Add Examples manually
gr.Examples( examples=[
["Qui va crear la guerra de les Galaxies?"],
["Quin era el nom real de Voltaire?"],
["Què fan al BSC?"],
# No existèix aquesta entrada a la VDB
# https://ca.wikipedia.org/wiki/Imperi_Gal%C3%A0ctic
# ["Què és un Imperi Galàctic?"],
# ["Què és l'Imperi Galàctic d'Isaac Asimov?"],
# ["Què és l'Imperi Galàctic de la Guerra de les Galàxies?"]
],
inputs=[input_], # only inputs
)
# Output
# =====================================================================================================================================
with gr.Column(scale=10, variant="panel"):
output = Textbox(
lines=10,
max_lines=25,
label="Output",
interactive=False,
show_copy_button=True
)
with gr.Accordion("Sources and context:", open=False, visible=False):
source_context = gr.Markdown(
label="Sources",
show_label=False,
)
with gr.Accordion("See full context evaluation:", open=False):
context_evaluation = gr.Markdown(
label="Full context",
show_label=False,
# interactive=False,
# autoscroll=False,
# show_copy_button=True
)
# Event Handlers
# =====================================================================================================================================
input_.change(
fn=change_interactive,
inputs=[input_],
outputs=[clear_btn, submit_btn],
api_name=False,
)
input_.change(
fn=None,
inputs=[input_],
api_name=False,
js="""(i, m) => {
document.getElementById('inputlenght').textContent = i.length + ' '
document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : "";
}""",
)
clear_btn.click(
fn=clear,
inputs=[],
outputs=[input_, output, source_context, context_evaluation, num_chunks],
# outputs=[input_, output, source_context, context_evaluation] + parameters_compontents,
queue=False,
api_name=False
)
submit_btn.click(
fn=submit_input,
# inputs=[input_] + parameters_compontents,
inputs=[input_] + [num_chunks],
outputs=[output, source_context, context_evaluation],
api_name="get-results"
)
# =====================================================================================================================================
# # Output
# with gr.Row():
# with gr.Column(scale=0.5):
# gr.Examples(
# examples=[["""Qui va crear la guerra de les Galaxies ?"""],],
# inputs=input_,
# outputs=[output, source_context, context_evaluation],
# fn=submit_input,
# )
# input_, output, source_context, context_evaluation, num_chunks = clear()
demo.launch(show_api=True)
if __name__ == "__main__":
gradio_app() |