Spaces:
Runtime error
Runtime error
File size: 32,174 Bytes
976166f c0e0ce8 976166f a77544c 976166f a77544c b9d37d3 a77544c b9d37d3 a77544c c121d97 a77544c 976166f a77544c 29f1ee3 c121d97 29f1ee3 a77544c c121d97 a77544c 976166f a77544c 976166f c0e0ce8 a77544c c0e0ce8 a77544c c0e0ce8 a77544c c0e0ce8 a77544c b9d37d3 a77544c b9d37d3 a77544c b9d37d3 cd1bf03 b9d37d3 cd1bf03 b9d37d3 a77544c cd1bf03 a77544c cd1bf03 a77544c b9d37d3 cd1bf03 b9d37d3 cd1bf03 b9d37d3 cd1bf03 b9d37d3 cd1bf03 b9d37d3 c121d97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
import pandas as pd
import math
from datetime import datetime
import hvplot.pandas
import math
import numpy as np
# load data
def get_processing_result_of_stocks_df(stock_df, profile_df):
# add sector_name display_name name
ticker_sector_map = dict(
zip(profile_df['ticker'], profile_df['aggregate_sector']))
ticker_display_name_map = dict(
zip(profile_df['ticker'], profile_df['display_name']))
ticker_name_map = dict(zip(profile_df['ticker'], profile_df['name']))
stock_df['display_name'] = stock_df['ticker'].map(ticker_display_name_map)
stock_df['name'] = stock_df['ticker'].map(ticker_name_map)
stock_df['aggregate_sector'] = stock_df['ticker'].map(ticker_sector_map)
# calculate pct using closing price
stock_df.sort_values(by=['date'], inplace=True)
stock_df['pct'] = stock_df.groupby('ticker')['close'].pct_change()
# calculate weight TODO: think about how to optimize this
stock_df = stock_df.merge(profile_df[['weight', 'date', 'ticker']], on=[
'ticker', 'date'], how='outer')
stock_df.rename(columns={'weight': 'initial_weight'}, inplace=True)
# create if not in stock_df
stock_df['current_weight'] = float('nan')
stock_df['previous_weight'] = float('nan')
df_grouped = stock_df.groupby('ticker')
for _, group in df_grouped:
pre_w = float('nan')
ini_w = float('nan')
for index, row in group.iterrows():
cur_w = float('nan')
# if has initial weight, the following row all use this initial weight
if not pd.isna(row['initial_weight']):
ini_w = row['initial_weight']
pre_w = ini_w
cur_w = ini_w
# just calculate current weight based on previous weight
else:
cur_w = pre_w * (1 + row['pct'])
stock_df.loc[index, 'current_weight'] = cur_w
stock_df.loc[index, 'previous_weight'] = pre_w
stock_df.loc[index, 'initial_weight'] = ini_w
pre_w = cur_w
stock_df.rename(columns={'weight': 'initial_weight'}, inplace=True)
stock_df.dropna(subset=['close'], inplace=True)
# normalize weight
stock_df['prev_w_in_p'] = stock_df['previous_weight'] / \
stock_df.groupby('date')['previous_weight'].transform('sum')
stock_df['ini_w_in_p'] = stock_df['initial_weight'] / \
stock_df.groupby('date')['initial_weight'].transform('sum')
# calculate weighted pct in portfolio
stock_df['portfolio_pct'] = stock_df['pct'] * stock_df['prev_w_in_p']
# calculate weight in sector TODO: remove
stock_df['prev_w_in_sectore'] = stock_df['previous_weight'] / \
stock_df.groupby(['date', 'aggregate_sector'])[
'previous_weight'].transform('sum')
stock_df['ini_w_in_sector'] = stock_df['initial_weight'] / \
stock_df.groupby(['date', 'aggregate_sector'])[
'initial_weight'].transform('sum')
# weighted pct in sector TODO: remove
stock_df['sector_pct'] = stock_df['pct'] * stock_df['prev_w_in_sectore']
# portfolio return
stock_df['portfolio_return'] = (stock_df.groupby(
'ticker')['portfolio_pct'].cumprod() + 1) - 1
# stock_df['cum_p_pct'] = stock_df.groupby(
# 'ticker')['portfolio_pct'].cumsum()
# stock_df['portfolio_return'] = np.exp(stock_df['cum_p_pct']) - 1
# stock return
stock_df['return'] = (stock_df.groupby('ticker')['pct'].cumprod() + 1) - 1
# stock_df['cum_pct'] = stock_df.groupby(
# 'ticker')['pct'].cumsum()
# stock_df['return'] = np.exp(stock_df['cum_pct']) - 1
# drop intermediate columns
stock_df = stock_df.drop(columns=['cum_p_pct'])
# risk
stock_df['risk'] = stock_df.groupby('ticker')['pct']\
.transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))
# fill na aggregate_sector
stock_df['aggregate_sector'].fillna('其他', inplace=True)
# sector return
stock_df['sector_return'] = stock_df['ini_w_in_sector'] * \
stock_df['return']
return stock_df
# total return by date
def get_portfolio_evaluation(portfolio_stock, benchmark_stock, profile_df):
# agg by date
agg_p_stock = portfolio_stock\
.groupby('date', as_index=False)\
.agg({'portfolio_return': 'sum', 'portfolio_pct': 'sum'})
agg_b_stock = benchmark_stock\
.groupby('date', as_index=False)\
.agg({'portfolio_return': 'sum', 'portfolio_pct': 'sum'})
# add pct of benchmark
merged_df = pd.merge(agg_p_stock, agg_b_stock, on=[
'date'], how='left', suffixes=('_p', '_b'))
# portfolio mkt cap
mkt_adjustment = pd.DataFrame(profile_df.groupby('date')['weight'].sum())
mkt_adjustment.rename(columns={'weight': 'mkt_cap'}, inplace=True)
merged_df = merged_df.merge(mkt_adjustment, on=['date'], how='outer')
for i in range(len(merged_df)):
if pd.isna(merged_df.loc[i, 'mkt_cap']) and i > 0:
merged_df.loc[i, 'mkt_cap'] = merged_df.loc[i-1,
'mkt_cap'] * (1 + merged_df.loc[i, 'portfolio_pct_p'])
# drop where portfolio_return_p is nan
merged_df.dropna(subset=['portfolio_return_p'], inplace=True)
# portfolio pnl TODO seem I can just use current wegith to do this
merged_df['prev_mkt_cap'] = merged_df['mkt_cap'].shift(1)
merged_df['pnl'] = merged_df['prev_mkt_cap'] * merged_df['portfolio_pct_p']
# risk std(pct)
merged_df['risk'] = merged_df['portfolio_pct_p'].rolling(
len(merged_df), min_periods=1).std() * math.sqrt(252)
# active return
merged_df['active_return'] = merged_df['portfolio_pct_p'] - \
merged_df['portfolio_pct_b']
# tracking errro std(active return)
merged_df['tracking_error'] = merged_df['active_return'].rolling(
len(merged_df), min_periods=1).std() * math.sqrt(252)
# cum pnl
merged_df['cum_pnl'] = merged_df['pnl'].cumsum()
return merged_df
def get_portfolio_sector_evaluation(portfolio_stock, benchmark_df):
# aggregate on sector and day
p_sector_df = portfolio_stock.groupby(['date', 'aggregate_sector'], as_index=False)\
.agg({'prev_w_in_p': 'sum', 'ini_w_in_p': "sum", "current_weight": 'sum',
"portfolio_pct": "sum", 'sector_return': "sum", 'ini_w_in_sector': 'sum', "portfolio_return": "sum"})
b_sector_df = benchmark_df.groupby(['date', 'aggregate_sector'], as_index=False)\
.agg({'prev_w_in_p': 'sum', 'ini_w_in_p': "sum", "current_weight": 'sum',
"portfolio_pct": "sum", "portfolio_return": "sum", 'sector_return': "sum", 'ini_w_in_sector': 'sum'})
# merge portfolio and benchmark
merge_df = p_sector_df.merge(
b_sector_df, on=['date', 'aggregate_sector'], how='outer', suffixes=('_p', '_b'))
# to acomendate bhb result
merge_df.rename(columns={'sector_return_p': 'return_p',
'sector_return_b': 'return_b'}, inplace=True)
# active return
merge_df['active_return'] = merge_df['portfolio_return_p'] - \
merge_df['portfolio_return_b']
# risk
merge_df['risk'] = merge_df.groupby('aggregate_sector')['portfolio_pct_p']\
.transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))
# tracking error
merge_df['tracking_error'] = merge_df.groupby('aggregate_sector')['active_return']\
.transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))
return merge_df
# sector_eval_df = get_portfolio_sector_evaluation(portfolio_stock, benchmark_stock)
# sector_eval_df[sector_eval_df.date == datetime(2021, 10,13)].hvplot.bar(x='aggregate_sector', y=['portfolio_pct_p','portfolio_pct_b'], stacked=True, rot=90, title='sector pct')
def merge_on_date(calculated_ps, calculated_bs):
p_selected = calculated_ps.reset_index(
)[['ini_w_in_p', 'portfolio_return', 'date', 'ticker', 'display_name', 'return']]
b_selected = calculated_bs.reset_index(
)[['ini_w_in_p', 'portfolio_return', 'date', 'ticker', 'return']]
merged_stock_df = pd.merge(p_selected, b_selected, on=[
'date', 'ticker'], how='outer', suffixes=('_p', '_b'))
return merged_stock_df
# merged_df = merge_on_date(portfolio_stock, benchmark_stock)
def get_bhb_result(merged_stock_df):
# merged_stock_df['ini_w_in_p_p'].fillna(0, inplace=True)
# merged_stock_df['ini_w_in_p_b'].fillna(0, inplace=True)
# merged_stock_df['portfolio_return_b'].fillna(0, inplace=True)
# merged_stock_df['portfolio_return_p'].fillna(0, inplace=True)
# allocation
merged_stock_df['allocation'] = (merged_stock_df['ini_w_in_p_p'] - merged_stock_df['ini_w_in_p_b']) \
* merged_stock_df['return_b']
# selection
merged_stock_df['selection'] = merged_stock_df['ini_w_in_p_b'] * \
(merged_stock_df['return_p'] -
merged_stock_df['return_b'])
# interaction
merged_stock_df['interaction'] = (merged_stock_df['ini_w_in_p_p'] - merged_stock_df['ini_w_in_p_b']) * \
(merged_stock_df['return_p'] -
merged_stock_df['return_b'])
# excess
merged_stock_df['excess'] = merged_stock_df['portfolio_return_p'] - \
merged_stock_df['portfolio_return_b']
# replace inf with nan
# merged_stock_df.replace([np.inf, -np.inf], np.nan, inplace=True)
return merged_stock_df
def calculate_total_attribution_by_sector(calculated_p_stock, calculated_b_stock):
sector_view_p = calculated_p_stock.groupby(['date', 'aggregate_sector']).aggregate({
'prev_w_in_p': 'sum', 'sector_pct': 'sum'})
sector_view_b = calculated_b_stock.groupby(['date', 'aggregate_sector']).aggregate({
'prev_w_in_p': 'sum', 'sector_pct': 'sum'})
sector_view_p['weighted_return'] = sector_view_p.prev_w_in_p * \
sector_view_p.sector_pct
sector_view_b['weighted_return'] = sector_view_b.prev_w_in_p * \
sector_view_b.sector_pct
merged_df = pd.merge(sector_view_p, sector_view_b, left_index=True,
right_index=True, how='outer', suffixes=['_b', '_p'])
merged_df.fillna(0, inplace=True)
merged_df['active_return'] = merged_df['weighted_return_p'] - \
merged_df['weighted_return_b']
merged_df['allocation'] = (
merged_df.prev_w_in_p_p - merged_df.prev_w_in_p_b) * merged_df.sector_pct_b
merged_df['selection'] = (
merged_df.sector_pct_p - merged_df.sector_pct_b) * merged_df.prev_w_in_p_b
merged_df['interaction'] = (merged_df.sector_pct_p - merged_df.sector_pct_b) * (
merged_df.prev_w_in_p_p - merged_df.prev_w_in_p_b)
merged_df['notinal_return'] = merged_df.allocation + \
merged_df.selection + merged_df.interaction
return merged_df.reset_index()
def calculate_total_attribution(calculated_p_stock, calculated_b_stock):
'''
using pct between two row's data of ticker to calculate the attribute,
use this method if need to calculate weekly attribut, yearly attribut, etc.
'''
merged_df = pd.merge(calculated_b_stock, calculated_p_stock, on=[
'date', 'ticker'], how='outer', suffixes=['_b', '_p'])
df = merged_df[['pct_p', 'pct_b', 'prev_w_in_p_p',
'prev_w_in_p_b', 'ticker', 'date']]
df.fillna(0, inplace=True)
df['active_return'] = df.pct_p * \
df.prev_w_in_p_p - df.pct_b * df.prev_w_in_p_b
# allocation
df['allocation'] = (df.prev_w_in_p_p - df.prev_w_in_p_b) * df.pct_b
df['selection'] = (df.pct_p - df.pct_b) * df.prev_w_in_p_b
df['interaction'] = (df.pct_p - df.pct_b) * \
(df.prev_w_in_p_p - df.prev_w_in_p_b)
df['notional_return'] = df.allocation + df.selection + df.interaction
daily_bnb_result = df.groupby(['date']).aggregate(
{'allocation': 'sum', 'selection': 'sum', 'interaction': 'sum', 'notional_return': 'sum', 'active_return': 'sum'})
daily_bnb_result['date'] = daily_bnb_result.index
return daily_bnb_result.reset_index(drop=True)
# return df
def calcualte_return(df: pd.DataFrame, start, end):
'''
calcualte return within a window for each entry of ticker
inclusive
this is an intermediate step to calculate attribute
calculation using the weighted_log_return
'''
df = df[(df.time >= start) & (df.time <= end)].copy()
inter_df = df.sort_values(by=['time'])
inter_df['cum_log_return'] = inter_df.groupby(
'ticker')['log_return'].cumsum()
inter_df['percentage_return'] = np.exp(
inter_df['cum_log_return']) - 1
# patch
df['return'] = inter_df['percentage_return']
return df
def calculate_weighted_return(df: pd.DataFrame, start=None, end=None):
'''
calcualte weighted return within a window for each entry of ticker
inclusive
calculation using the weighted_log_return
'''
if start is None:
start = df.time.min()
if end is None:
end = df.time.max()
df = df[(df.time >= start) & (df.time <= end)].copy()
inter_df = df.sort_values(by=['time'])
inter_df['cum_weighted_log_return'] = inter_df.groupby(
'ticker')['weighted_log_return'].cumsum()
inter_df['percentage_return'] = np.exp(
inter_df['cum_weighted_log_return']) - 1
# patch
df['weighted_return'] = inter_df['percentage_return']
return df
def calculate_log_return(df: pd.DataFrame):
'''
patch df with the weighted log return and unweighted log return
calculated using close price
an intermediate step to calculate the weighted return,
the benefit using this is this can be aggregated with any time window
and work for both portfolio and benchmark
'''
inter_df = df.sort_values(by=['time'])
grouped = inter_df.groupby('ticker')
inter_df['prev_w'] = grouped['weight'].shift(1)
inter_df['prev_close'] = grouped['close'].shift(1)
inter_df['weighted_log_return'] = np.log(
(inter_df['close'] / inter_df['prev_close']) * inter_df['prev_w'])
inter_df['log_return'] = np.log(inter_df['close'] / inter_df['prev_close'])
# patch
df['log_return'] = inter_df['log_return']
df['weighted_log_return'] = inter_df['weighted_log_return']
# TODO: change to log return instead
# def calculate_return(df, start, end):
# df = df[(df.time >= start) & (df.time <= end)].copy()
# df.sort_values(by=['time'], inplace=True)
# grouped = df.groupby('ticker')
# df['return'] = (1 + grouped.pct.cumprod()) - 1
# return df
# def calculate_norm_return(df, start, end):
# '''
# calculate accumlative normalized return within a window
# for each entry of ticker using norm_pct
# normalized return is the weighted return in respect to
# the whole portfolio
# Return
# ------
# dataframe
# dataframe with return for each ticker
# '''
# df = df[(df.time >= start) & (df.time <= end)].copy()
# df.sort_values(by=['time'], inplace=True)
# grouped = df.groupby('ticker')
# df['norm_return'] = (1 + grouped.norm_pct.cumprod()) - 1
# return df
def _uniformize_time_series(profile_df):
'''
a helper function to create analytic_df
make each entry in the time series has the same dimension
by filling none holding stock that was held in previous period has 0 shares and 0 ini_w
Parameters
----------
profile_df : dataframe
portfolio profile dataframe or benchmark profile dataframe
Returns
-------
dataframe
dataframe with uniformized time series
'''
# Get unique time periods
time_periods = profile_df['time'].unique()
time_periods = sorted(time_periods)
# Iterate through time periods
for i in range(len(time_periods) - 1):
current_period = time_periods[i]
next_period = time_periods[i + 1]
current_df = profile_df[profile_df['time'] == current_period]
next_df = profile_df[profile_df['time'] == next_period]
tickers_current = current_df['ticker']
tickers_next = next_df['ticker']
# row that has ticker not in tickers_next
missing_tickers = current_df[~tickers_current.isin(
tickers_next)].copy()
if len(missing_tickers) != 0:
missing_tickers.time = next_period
missing_tickers.shares = 0
missing_tickers.ini_w = 0
profile_df = pd.concat(
[profile_df, missing_tickers], ignore_index=True)
# reset index
return profile_df.reset_index(drop=True)
def create_analytic_df(price_df, profile_df):
'''
create a df for analysis processing
filling information from profile df to stock price df
'''
# daily stock price use begin of the date, need to convert profile_df day to begin of the date
profile_df['time'] = profile_df['time'].map(
lambda x: datetime(x.year, x.month, x.day))
# make every time entry the same dimension
uni_profile_df = _uniformize_time_series(profile_df)
# TODO handle rename column here
df = price_df.merge(uni_profile_df, on=['ticker', 'time'], how='outer')
df.sort_values(by=['ticker', 'time'], inplace=True)
# add sector, aggregate_sector, display_name and name to missing rows
grouped = df.groupby('ticker')
df['sector'] = grouped['sector'].fillna(method='ffill')
df['aggregate_sector'] = grouped['aggregate_sector'].fillna(method='ffill')
df['display_name'] = grouped['display_name'].fillna(method='ffill')
df['name'] = grouped['name'].fillna(method='ffill')
# assign missing ini_w
df['ini_w'] = grouped['ini_w'].fillna(method='ffill')
# assign missing shares, benchmark doesn't have shares
if ('shares' in df.columns):
df['shares'] = grouped['shares'].fillna(method='ffill')
# remove profile and price entry before first profile entry from df
df.dropna(subset=['ini_w'], inplace=True)
df.dropna(subset=['close'], inplace=True)
# remove where weight is 0
df = df[df['ini_w'] != 0].copy()
return df
def calculate_attributes_between_dates(start, end, calculated_p_stock, calculated_b_stock):
'''
calculate the attributes to explain the active return between two time series entries, the time series entry
right after or at start and another time serie right before or at end
return a df with attributes to explain the active return between start and end time series
'''
p_ranged_df = calculated_p_stock[(calculated_p_stock.date >= start) & (
calculated_p_stock.date <= end)]
b_ranged_df = calculated_b_stock[(calculated_b_stock.date >= start) & (
calculated_b_stock.date <= end)]
p_end_df = p_ranged_df[p_ranged_df.date == p_ranged_df.date.max()]
p_concat = pd.concat([p_start_df, p_end_df])
# pct is unweighted return
p_concat['pct'] = p_concat.groupby('ticker')['close'].pct_change()
p_concat = p_concat.dropna(subset=['pct'])
p_concat['prev_w_in_p'] = p_concat['ticker'].map(
lambda x: p_start_df[p_start_df.ticker == x]['prev_w_in_p'].values[0])
# p_concatp_concat[['date', 'display_name', 'pct',
# 'close', 'prev_w_in_p', 'ini_w_in_p']]
# return and weight of benchmark
b_start_df = b_ranged_df[b_ranged_df.date == b_ranged_df.date.min()]
b_end_df = b_ranged_df[b_ranged_df.date == b_ranged_df.date.max()]
b_concat = pd.concat([b_start_df, b_end_df])
b_concat['pct'] = b_concat.groupby('ticker')['close'].pct_change()
b_concat = b_concat.dropna(subset=['pct'])
b_concat['prev_w_in_p'] = b_concat['ticker'].map(
lambda x: b_concat[b_concat.ticker == x]['prev_w_in_p'].values[0])
# b_concat = b_concat[['date', 'display_name', 'pct',
# 'close', 'prev_w_in_p', 'ini_w_in_p']]
merged_df = pd.merge(b_concat, p_concat, on=[
'ticker', 'date'], suffixes=('_b', '_p'), how='outer')
df = merged_df[['display_name_p', 'display_name_b', 'ticker',
'pct_b', 'pct_p', 'prev_w_in_p_b', 'prev_w_in_p_p']].copy()
# indicate weather stock is in portfolio
df['in_portfolio'] = False
df.loc[df.display_name_p.notnull(), 'in_portfolio'] = True
# fill display_name
df['display_name_p'] = df['display_name_p'].fillna(df['display_name_b'])
df['display_name_b'] = df['display_name_b'].fillna(df['display_name_p'])
# treat nan weight and pct as 0
df.fillna(0, inplace=True)
# allocation, selection, interaction, notional return, active return
df['allocation'] = (df.prev_w_in_p_p - df.prev_w_in_p_b) * df.pct_b
df['selection'] = (df.pct_p - df.pct_b) * df.prev_w_in_p_b
df['interaction'] = (df.pct_p - df.pct_b) * \
(df.prev_w_in_p_p - df.prev_w_in_p_b)
df['notional_return'] = df.allocation + df.selection + df.interaction
# weighted return
df['return'] = df.prev_w_in_p_p * df.pct_p
# weight * prev_w is the weighted return
df['active_return'] = df.prev_w_in_p_p * \
df.pct_p - df.prev_w_in_p_b * df.pct_b
return df
def calculate_cum_pnl(df, start, end):
'''return df with cumulative pnl within a window'''
df = df[df.time.between(start, end, inclusive='both')].copy()
df.sort_values(by=['time'], inplace=True)
grouped = df.groupby('ticker')
df['cum_pnl'] = grouped['pnl'].cumsum()
return df
def change_resolution(df, freq='W'):
'''
aggregate by keeping the first entry of the freq period,
the resolution of the df, default to weekly
'''
df['freq'] = pd.to_datetime(df['date']).dt.to_period(freq)
return df.groupby('freq').first().reset_index()
def calculate_pnl(df):
'''
patch df with pnl column
pnl is calculated using cash
'''
df.sort_values(by=['time'], inplace=True)
grouped = df.groupby('ticker')
df['pnl'] = grouped['cash'].diff()
def calculate_pct(df):
'''
calculate pct using close price
'''
df.sort_values(by=['time'], inplace=True)
grouped = df.groupby('ticker')
df['pct'] = grouped['close'].pct_change()
def calculate_norm_pct(df):
'''
use weight to calculate the norm pct
'''
df['norm_pct'] = df.weight * df.pct
def calculate_weight_using_cash(df):
'''
patch df with current weight for each entry
use cash to calculate weight
Parameters
----------
df : dataframe
dataframe with processed cash column
'''
df['weight'] = float('nan')
grouped = df.groupby('time')
df.weight = grouped.cash.transform(lambda x: x / x.sum())
def calculate_cash(df):
'''
patch df with cash column
cash = shares * close
Parameters
----------
df : dataframe
dataframe with processed shares and close column
'''
df['cash'] = df['shares'] * df['close']
def calculate_weight_using_pct(df):
'''
calculate weight using weight column
calculate benchmark stock using this, since benchmark stock
doesn't have share information
Parameters
----------
df: dataframe
dataframe with weight, pct on closing and ini_w columns
'''
df.sort_values(by=['time'], inplace=True)
grouped = df.groupby('ticker')
for _, group in grouped:
prev_row = None
for index, row in group.iterrows():
if prev_row is None:
prev_row = df.loc[index]
continue
df.loc[index, 'weight'] = prev_row['weight'] * (1 + row['pct'])
prev_row = df.loc[index]
# normalize weight
grouped = df.groupby('time')
normed_weight = grouped['weight'].transform(lambda x: x / x.sum())
df['weight'] = normed_weight
def calculate_periodic_BHB(agg_b, agg_p):
'''
calculate periodic BHB for each ticker entry
the accumulated return of a period will be used,
the weight is the weight at the began of the period
Note:
----
if only one entry in a period, the return will be nan,
Parameters
----------
agg_b : pd.DataFrame
aggregated benchmark analytic_df
agg_p : pd.DataFrame
aggregated portfolio analytic_df
Returns
-------
pd.DataFrame
periodic BHB result contain allocation, interaction, selection, nominal_active_return and active_return
'''
# merge both
agg_b['in_benchmark'] = True
agg_p['in_portfolio'] = True
selected_column = ['ticker', 'aggregate_sector',
'prev_weight', 'return', 'period', 'display_name']
columns_to_fill = ['return_b', 'return_p',
'prev_weight_p', 'prev_weight_b']
merged_df = pd.merge(agg_b[['in_benchmark'] + selected_column],
agg_p,
how='outer',
on=['period', 'ticker'],
suffixes=('_b', '_p'))
merged_df[columns_to_fill] = merged_df[columns_to_fill].fillna(0)
# complement fill aggregate_sector and display_name
post_process_merged_analytic_df(merged_df)
# merged_df['in_portfolio'].fillna(False, inplace=True)
# merged_df['in_benchmark'].fillna(False, inplace=True)
# merged_df['aggregate_sector_b'].fillna(
# merged_df['aggregate_sector_p'], inplace=True)
# merged_df["display_name_b"].fillna(merged_df.display_name_p, inplace=True)
# merged_df.rename(columns={'aggregate_sector_b': 'aggregate_sector',
# 'display_name_b': 'display_name',
# }, inplace=True)
# merged_df.drop(columns=['aggregate_sector_p',
# 'display_name_p'], inplace=True)
# calculate active return
merged_df['weighted_return_p'] = merged_df['return_p'] * \
merged_df['prev_weight_p']
merged_df['weighted_return_b'] = merged_df['return_b'] * \
merged_df['prev_weight_b']
merged_df['active_return'] = merged_df['weighted_return_p'] - \
merged_df['weighted_return_b']
# allocation, interaction, selection and nominal active return
merged_df['allocation'] = (
merged_df.prev_weight_p - merged_df.prev_weight_b) * merged_df.return_b
merged_df['interaction'] = (merged_df.return_p - merged_df.return_b) \
* (merged_df.prev_weight_p - merged_df.prev_weight_b)
merged_df['selection'] = (
merged_df.return_p - merged_df.return_b) * merged_df.prev_weight_b
merged_df['notional_active_return'] = merged_df['allocation'] + \
merged_df['interaction'] + merged_df['selection']
return merged_df
def post_process_merged_analytic_df(merged_df):
'''
fill nan in some column on merged analytic_df
patch aggregate_sector, display_name, in_portfolio, in_benchmark,
'''
# merge both
merged_df['in_portfolio'].fillna(False, inplace=True)
merged_df['in_benchmark'].fillna(False, inplace=True)
# complement fill aggregate_sector and display_name
merged_df['aggregate_sector_b'].fillna(
merged_df['aggregate_sector_p'], inplace=True)
merged_df["display_name_b"].fillna(merged_df.display_name_p, inplace=True)
merged_df.rename(columns={'aggregate_sector_b': 'aggregate_sector',
'display_name_b': 'display_name',
}, inplace=True)
merged_df.drop(columns=['aggregate_sector_p',
'display_name_p'], inplace=True)
def calculate_weighted_pct(df):
'''
patch df with weighted pct, if pct is not calculated patch that as well
'''
if 'pct' not in df.columns:
calculate_pct(df)
df['weighted_pct'] = df['pct'] * df['weight']
def aggregate_analytic_df_by_period(df, freq):
'''
return an aggregated analytic_df with weekly, monthly, yearly or daily frequency
each ticker will have 1 rows for each period,
cash is the value at the end of the period.
shares is the # of shares at end of the period.
prev_weight is the weight of that ticker entry at end of previous period.
log_return is sum of log_return within the period.
weight is the weight of that ticker entry at end of the period.
return is from last of previous period to last of current period.
Parameters
----------
df : pd.DataFrame
analytic_df, dateframe of stock price has weight, log_return information
freq : str
weekly: 'W-MON' start on tuesday end on monday,
monthly: 'M',
yearly: 'Y',
daily: "D"
Returns
-------
pd.DataFrame
aggregated analytic_df with weekly, monthly, yearly or daily frequency
'''
# create prev_weight
df.sort_values(by=['time'], inplace=True)
grouped = df.groupby('ticker')
df['prev_weight'] = grouped['weight'].shift(1)
# aggregate by summing log return and keep the first prev_weight
df['period'] = df.time.dt.to_period(freq)
grouped = df.groupby(['period', 'ticker'])
agg_rules = {'display_name': 'first',
'aggregate_sector': 'first',
'prev_weight': 'first',
'log_return': 'sum',
'weight': 'last'
}
# handle aggregate on benchamrk
if 'cash' in df.columns and 'shares' in df.columns:
agg_rules['cash'] = 'last'
agg_rules['shares'] = 'last'
# aggregation
agg_df = grouped.agg(agg_rules)
# calculate return by convert sum log return to percentage return
agg_df['return'] = np.exp(agg_df.log_return) - 1
# make it a one dimensional dataframe
agg_df.reset_index(inplace=True)
return agg_df
def aggregate_bhb_df(df, by="total"):
keys = ['period', 'aggregate_sector'] if by == 'sector' else ['period']
agg_df = df.groupby(keys)[['active_return',
'allocation',
'interaction',
'selection',
'notional_active_return']].sum()
return agg_df
def calculate_draw_down_on(df, key='weighted_return'):
'''
calculate draw down on anlaytic df based on either return or accumulative pnl
Parameters
----------
df : pd.DataFrame
analytic df
key : str, optional
cum_pnl or weighted_return, by default 'weighted_return'
'''
if key not in df.columns:
raise ValueError(f'{key} not in df')
else:
df = df.sort_values(by=['time'])
df[f'rolling_max_{key}'] = df[key].rolling(
window=len(df), min_periods=1).max()
if key == 'pnl':
df['drawn_down'] = df[key] / df[f'rolling_max_{key}']
else:
df['drawn_down'] = (1 + df[key]) / (1 + df[f'rolling_max_{key}'])
return df
def _daily_return(df: pd.DataFrame):
'''
patch df with daily return
helper function for get_portfolio_anlaysis
'''
prev_ws = df.groupby('ticker')['weight'].shift(1)
df['return'] = df.pct * prev_ws
def _agg_on_day(df: pd.DataFrame):
df['period'] = df.time.dt.to_period('D')
on_column = {'return': 'sum'}
if 'cash' in df.columns:
on_column['cash'] = 'sum'
if 'pnl' in df.columns:
on_column['pnl'] = 'sum'
agg_df = df.groupby('period').agg(on_column)
return agg_df.reset_index()
def get_portfolio_anlaysis(analytic_p, analytic_b):
'''
return df contain daily pnl, daily return, accumulative return
risk and tracking error of portfolio and benchmark
'''
# daily return(weighted pct)
_daily_return(analytic_p)
_daily_return(analytic_b)
# aggregate to daily
agg_p = _agg_on_day(analytic_p)
agg_b = _agg_on_day(analytic_b)
# accumulative return
agg_p['cum_return'] = (agg_p['return']+1).cumprod() - 1
agg_b['cum_return'] = (agg_b['return']+1).cumprod() - 1
# merge
merged_df = pd.merge(
agg_p, agg_b, on=['period'], how='outer', suffixes=('_p', '_b'))
merged_df.sort_values('period', inplace=True)
# risk, using population deviation
merged_df['risk'] = merged_df['return_p'].expanding(min_periods=1).std()
# tracking error
merged_df['tracking_error'] = (
merged_df['return_p'] - merged_df['return_b']).expanding(min_periods=1).std()
return merged_df
|