Spaces:
Runtime error
Runtime error
File size: 4,663 Bytes
976166f c8b5a38 976166f c8b5a38 976166f c8b5a38 976166f c8b5a38 976166f c8b5a38 976166f c8b5a38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import pytz
import datetime
import io
import pandas as pd
import table_schema as ts
from sqlalchemy import create_engine
db_url = 'sqlite:///instance/local.db'
def time_in_beijing(strip_time_zone=True):
'''
return current time in Beijing as datetime object
'''
tz = pytz.timezone('Asia/Shanghai')
dt = datetime.datetime.now(tz)
if strip_time_zone:
dt = dt.replace(tzinfo=None)
return dt
def add_details_to_stock_df(stock_df):
'''return df adding sector, aggregate sector, display_name, name to it
Parameters
----------
stock_df: pd.DataFrame
the dataframe contain ticker columns
Returns
-------
merged_df: pd.DataFrame
the dataframe with sector, aggregate sector, display_name and name added
'''
with create_engine(db_url).connect() as conn:
detail_df = pd.read_sql(ts.STOCKS_DETAILS_TABLE, con=conn)
merged_df = pd.merge(stock_df, detail_df[
['sector', 'name',
'aggregate_sector',
'display_name',
'ticker']
], on='ticker', how='left')
merged_df['aggregate_sector'].fillna('其他', inplace=True)
return merged_df
def convert_string_to_datetime(date_string, time_zone="Asia/Shanghai"):
'''
Convert a string to a datetime object with the timezone by default,
Shanghai
'''
dt = datetime.datetime.strptime(date_string, '%Y-%m-%d %H:%M:%S.%f')
tz = pytz.timezone(time_zone)
dt = tz.localize(dt)
return dt
def create_stocks_entry_from_excel(byte_string):
'''create stock entry from excel file
Parameters
----------
byte_string: bytes
the byte string of the excel file
Returns
-------
new_stock_entry: list
[{ticker:str, shares:int, mean_price: float, date:datetime.datetime}]
the list of stock entry
'''
uploaded_df = None
with io.BytesIO(byte_string) as f:
uploaded_df = pd.read_excel(f)
# throw exception if doesn't have required columns
if not set(['证券代码', '持仓数量', '平均建仓成本', 'time_stamp']).issubset(uploaded_df.columns):
raise Exception('Missing required columns')
# print(uploaded_df)
# uploaded_df = pd.read_excel()
uploaded_df.drop(columns='Unnamed: 0', inplace=True)
# Define the regular expression pattern to match the string endings
pattern = r'\.(sz|sh)$'
# Define the replacement strings for each match group
replacements = {'.sz': '.XSHE', '.sh': '.XSHG'}
# Use the str.replace method with the pattern and replacements
uploaded_df['证券代码'] = uploaded_df['证券代码'].str.lower()
uploaded_df['证券代码'] = uploaded_df['证券代码'].str.replace(
pattern, lambda m: replacements[m.group()], regex=True)
new_stock_entry = [
dict(ticker=ticker, shares=shares, date=time, mean_price=mean_price)
for ticker, shares, mean_price, time in zip(
uploaded_df['证券代码'],
uploaded_df['持仓数量'],
uploaded_df['平均建仓成本'],
pd.to_datetime(uploaded_df['time_stamp']))]
# new_profile, error = api.update_portfolio_profile(new_stock_entry)
print(new_stock_entry)
return new_stock_entry
def style_number(vals):
'''color negative number as red, positive as green
Parameters
----------
vals: df columns
the columns to be styled
Returns
-------
list
the list of style
'''
return ['color: red' if v < 0 else 'color: green' for v in vals]
def create_share_changes_report(df):
'''Create a markdown report of the share changes for certain date
Parameters
----------
df: pd.DataFrame
the dataframe of profile for a specific date
Returns
-------
markdown: str
'''
date_str = df.date.to_list()[0].strftime('%Y-%m-%d %H:%M:%S')
markdown = f"### {date_str}\n\n"
markdown += 'Ticker | Display Name | Share Changes\n'
markdown += '--- | --- | ---\n'
for _, row in df.iterrows():
share_changes = row['share_changes']
# Apply green color to positive numbers and red color to negative numbers
if share_changes > 0:
share_changes_str = f'<span style="color:green">{share_changes}</span>'
elif share_changes < 0:
share_changes_str = f'<span style="color:red">{share_changes}</span>'
else:
share_changes_str = str(share_changes)
markdown += '{} | {} | {}\n'.format(row['ticker'],
row['display_name'], share_changes_str)
return markdown
|