File size: 30,977 Bytes
976166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e0ce8
 
976166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77544c
976166f
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d37d3
a77544c
 
 
 
 
b9d37d3
 
 
 
 
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976166f
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f1ee3
 
 
 
 
a77544c
29f1ee3
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77544c
 
 
 
 
 
 
 
 
976166f
 
 
 
 
 
 
c0e0ce8
 
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e0ce8
 
 
 
 
 
 
 
 
 
 
a77544c
c0e0ce8
a77544c
c0e0ce8
 
 
 
 
 
 
 
 
 
 
 
 
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d37d3
 
 
 
 
 
 
 
 
 
 
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d37d3
 
 
a77544c
b9d37d3
 
 
cd1bf03
b9d37d3
 
 
 
 
 
 
 
 
 
 
 
cd1bf03
b9d37d3
 
 
 
 
 
 
a77544c
cd1bf03
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd1bf03
a77544c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d37d3
cd1bf03
b9d37d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd1bf03
b9d37d3
cd1bf03
 
b9d37d3
cd1bf03
b9d37d3
 
 
 
 
 
 
 
cd1bf03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import pandas as pd
import math
from datetime import datetime
import hvplot.pandas
import math
import numpy as np
# load data


def get_processing_result_of_stocks_df(stock_df, profile_df):

    # add sector_name display_name name
    ticker_sector_map = dict(
        zip(profile_df['ticker'], profile_df['aggregate_sector']))
    ticker_display_name_map = dict(
        zip(profile_df['ticker'], profile_df['display_name']))
    ticker_name_map = dict(zip(profile_df['ticker'], profile_df['name']))
    stock_df['display_name'] = stock_df['ticker'].map(ticker_display_name_map)
    stock_df['name'] = stock_df['ticker'].map(ticker_name_map)
    stock_df['aggregate_sector'] = stock_df['ticker'].map(ticker_sector_map)

    # calculate pct using closing price
    stock_df.sort_values(by=['date'], inplace=True)
    stock_df['pct'] = stock_df.groupby('ticker')['close'].pct_change()

    # calculate weight TODO: think about how to optimize this
    stock_df = stock_df.merge(profile_df[['weight', 'date', 'ticker']], on=[
                              'ticker', 'date'], how='outer')
    stock_df.rename(columns={'weight': 'initial_weight'}, inplace=True)
    # create if not in stock_df

    stock_df['current_weight'] = float('nan')
    stock_df['previous_weight'] = float('nan')
    df_grouped = stock_df.groupby('ticker')
    for _, group in df_grouped:
        pre_w = float('nan')
        ini_w = float('nan')
        for index, row in group.iterrows():
            cur_w = float('nan')

            # if has initial weight, the following row all use this initial weight
            if not pd.isna(row['initial_weight']):
                ini_w = row['initial_weight']
                pre_w = ini_w
                cur_w = ini_w

            # just calculate current weight based on previous weight
            else:
                cur_w = pre_w * (1 + row['pct'])

            stock_df.loc[index, 'current_weight'] = cur_w
            stock_df.loc[index, 'previous_weight'] = pre_w
            stock_df.loc[index, 'initial_weight'] = ini_w
            pre_w = cur_w

    stock_df.rename(columns={'weight': 'initial_weight'}, inplace=True)
    stock_df.dropna(subset=['close'], inplace=True)

    # normalize weight
    stock_df['prev_w_in_p'] = stock_df['previous_weight'] / \
        stock_df.groupby('date')['previous_weight'].transform('sum')

    stock_df['ini_w_in_p'] = stock_df['initial_weight'] / \
        stock_df.groupby('date')['initial_weight'].transform('sum')

    # calculate weighted pct in portfolio
    stock_df['portfolio_pct'] = stock_df['pct'] * stock_df['prev_w_in_p']

    # calculate weight in sector TODO: remove
    stock_df['prev_w_in_sectore'] = stock_df['previous_weight'] / \
        stock_df.groupby(['date', 'aggregate_sector'])[
        'previous_weight'].transform('sum')
    stock_df['ini_w_in_sector'] = stock_df['initial_weight'] / \
        stock_df.groupby(['date', 'aggregate_sector'])[
        'initial_weight'].transform('sum')
    # weighted pct in sector TODO: remove
    stock_df['sector_pct'] = stock_df['pct'] * stock_df['prev_w_in_sectore']

    # portfolio return
    stock_df['portfolio_return'] = (stock_df.groupby(
        'ticker')['portfolio_pct'].cumprod() + 1) - 1
    # stock_df['cum_p_pct'] = stock_df.groupby(
    #     'ticker')['portfolio_pct'].cumsum()
    # stock_df['portfolio_return'] = np.exp(stock_df['cum_p_pct']) - 1

    # stock return
    stock_df['return'] = (stock_df.groupby('ticker')['pct'].cumprod() + 1) - 1
    # stock_df['cum_pct'] = stock_df.groupby(
    #     'ticker')['pct'].cumsum()
    # stock_df['return'] = np.exp(stock_df['cum_pct']) - 1

    # drop intermediate columns
    stock_df = stock_df.drop(columns=['cum_p_pct'])

    # risk
    stock_df['risk'] = stock_df.groupby('ticker')['pct']\
        .transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))

    # fill na aggregate_sector
    stock_df['aggregate_sector'].fillna('其他', inplace=True)
    # sector return
    stock_df['sector_return'] = stock_df['ini_w_in_sector'] * \
        stock_df['return']

    return stock_df


# total return by date
def get_portfolio_evaluation(portfolio_stock, benchmark_stock, profile_df):
    # agg by date
    agg_p_stock = portfolio_stock\
        .groupby('date', as_index=False)\
        .agg({'portfolio_return': 'sum', 'portfolio_pct': 'sum'})
    agg_b_stock = benchmark_stock\
        .groupby('date', as_index=False)\
        .agg({'portfolio_return': 'sum', 'portfolio_pct': 'sum'})

    # add pct of benchmark
    merged_df = pd.merge(agg_p_stock, agg_b_stock, on=[
                         'date'], how='left', suffixes=('_p', '_b'))

    # portfolio mkt cap
    mkt_adjustment = pd.DataFrame(profile_df.groupby('date')['weight'].sum())
    mkt_adjustment.rename(columns={'weight': 'mkt_cap'}, inplace=True)
    merged_df = merged_df.merge(mkt_adjustment, on=['date'], how='outer')

    for i in range(len(merged_df)):
        if pd.isna(merged_df.loc[i, 'mkt_cap']) and i > 0:
            merged_df.loc[i, 'mkt_cap'] = merged_df.loc[i-1,
                                                        'mkt_cap'] * (1 + merged_df.loc[i, 'portfolio_pct_p'])
    # drop where portfolio_return_p is nan
    merged_df.dropna(subset=['portfolio_return_p'], inplace=True)
    # portfolio pnl TODO seem I can just use current wegith to do this
    merged_df['prev_mkt_cap'] = merged_df['mkt_cap'].shift(1)
    merged_df['pnl'] = merged_df['prev_mkt_cap'] * merged_df['portfolio_pct_p']

    # risk std(pct)
    merged_df['risk'] = merged_df['portfolio_pct_p'].rolling(
        len(merged_df), min_periods=1).std() * math.sqrt(252)

    # active return
    merged_df['active_return'] = merged_df['portfolio_pct_p'] - \
        merged_df['portfolio_pct_b']

    # tracking errro std(active return)
    merged_df['tracking_error'] = merged_df['active_return'].rolling(
        len(merged_df), min_periods=1).std() * math.sqrt(252)

    # cum pnl
    merged_df['cum_pnl'] = merged_df['pnl'].cumsum()

    return merged_df


def get_portfolio_sector_evaluation(portfolio_stock, benchmark_df):
    # aggregate on sector and day
    p_sector_df = portfolio_stock.groupby(['date', 'aggregate_sector'], as_index=False)\
        .agg({'prev_w_in_p': 'sum', 'ini_w_in_p': "sum", "current_weight": 'sum',
              "portfolio_pct": "sum", 'sector_return': "sum", 'ini_w_in_sector': 'sum', "portfolio_return": "sum"})
    b_sector_df = benchmark_df.groupby(['date', 'aggregate_sector'], as_index=False)\
        .agg({'prev_w_in_p': 'sum', 'ini_w_in_p': "sum", "current_weight": 'sum',
              "portfolio_pct": "sum", "portfolio_return": "sum", 'sector_return': "sum", 'ini_w_in_sector': 'sum'})

    # merge portfolio and benchmark
    merge_df = p_sector_df.merge(
        b_sector_df, on=['date', 'aggregate_sector'], how='outer', suffixes=('_p', '_b'))

    # to acomendate bhb result
    merge_df.rename(columns={'sector_return_p': 'return_p',
                    'sector_return_b': 'return_b'}, inplace=True)
    # active return
    merge_df['active_return'] = merge_df['portfolio_return_p'] - \
        merge_df['portfolio_return_b']

    # risk
    merge_df['risk'] = merge_df.groupby('aggregate_sector')['portfolio_pct_p']\
        .transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))

    # tracking error
    merge_df['tracking_error'] = merge_df.groupby('aggregate_sector')['active_return']\
        .transform(lambda x: x.rolling(len(x), min_periods=1).std() * math.sqrt(252))
    return merge_df


# sector_eval_df = get_portfolio_sector_evaluation(portfolio_stock, benchmark_stock)
# sector_eval_df[sector_eval_df.date == datetime(2021, 10,13)].hvplot.bar(x='aggregate_sector', y=['portfolio_pct_p','portfolio_pct_b'], stacked=True, rot=90, title='sector pct')


def merge_on_date(calculated_ps, calculated_bs):
    p_selected = calculated_ps.reset_index(
    )[['ini_w_in_p', 'portfolio_return', 'date', 'ticker', 'display_name', 'return']]
    b_selected = calculated_bs.reset_index(
    )[['ini_w_in_p', 'portfolio_return', 'date', 'ticker', 'return']]
    merged_stock_df = pd.merge(p_selected, b_selected, on=[
                               'date', 'ticker'], how='outer', suffixes=('_p', '_b'))
    return merged_stock_df


# merged_df = merge_on_date(portfolio_stock, benchmark_stock)


def get_bhb_result(merged_stock_df):
    # merged_stock_df['ini_w_in_p_p'].fillna(0, inplace=True)
    # merged_stock_df['ini_w_in_p_b'].fillna(0, inplace=True)
    # merged_stock_df['portfolio_return_b'].fillna(0, inplace=True)
    # merged_stock_df['portfolio_return_p'].fillna(0, inplace=True)
    # allocation
    merged_stock_df['allocation'] = (merged_stock_df['ini_w_in_p_p'] - merged_stock_df['ini_w_in_p_b']) \
        * merged_stock_df['return_b']

    # selection
    merged_stock_df['selection'] = merged_stock_df['ini_w_in_p_b'] * \
        (merged_stock_df['return_p'] -
         merged_stock_df['return_b'])

    # interaction
    merged_stock_df['interaction'] = (merged_stock_df['ini_w_in_p_p'] - merged_stock_df['ini_w_in_p_b']) * \
        (merged_stock_df['return_p'] -
         merged_stock_df['return_b'])

    # excess
    merged_stock_df['excess'] = merged_stock_df['portfolio_return_p'] - \
        merged_stock_df['portfolio_return_b']

    # replace inf with nan
    # merged_stock_df.replace([np.inf, -np.inf], np.nan, inplace=True)
    return merged_stock_df


def calculate_total_attribution_by_sector(calculated_p_stock, calculated_b_stock):
    sector_view_p = calculated_p_stock.groupby(['date', 'aggregate_sector']).aggregate({
        'prev_w_in_p': 'sum', 'sector_pct': 'sum'})
    sector_view_b = calculated_b_stock.groupby(['date', 'aggregate_sector']).aggregate({
        'prev_w_in_p': 'sum', 'sector_pct': 'sum'})

    sector_view_p['weighted_return'] = sector_view_p.prev_w_in_p * \
        sector_view_p.sector_pct
    sector_view_b['weighted_return'] = sector_view_b.prev_w_in_p * \
        sector_view_b.sector_pct

    merged_df = pd.merge(sector_view_p, sector_view_b, left_index=True,
                         right_index=True, how='outer', suffixes=['_b', '_p'])
    merged_df.fillna(0, inplace=True)
    merged_df['active_return'] = merged_df['weighted_return_p'] - \
        merged_df['weighted_return_b']
    merged_df['allocation'] = (
        merged_df.prev_w_in_p_p - merged_df.prev_w_in_p_b) * merged_df.sector_pct_b
    merged_df['selection'] = (
        merged_df.sector_pct_p - merged_df.sector_pct_b) * merged_df.prev_w_in_p_b
    merged_df['interaction'] = (merged_df.sector_pct_p - merged_df.sector_pct_b) * (
        merged_df.prev_w_in_p_p - merged_df.prev_w_in_p_b)
    merged_df['notinal_return'] = merged_df.allocation + \
        merged_df.selection + merged_df.interaction
    return merged_df.reset_index()


def calculate_total_attribution(calculated_p_stock, calculated_b_stock):
    '''
    using pct between two row's data of ticker to calculate the attribute,
    use this method if need to calculate weekly attribut, yearly attribut, etc.
    '''
    merged_df = pd.merge(calculated_b_stock, calculated_p_stock, on=[
                         'date', 'ticker'], how='outer', suffixes=['_b', '_p'])
    df = merged_df[['pct_p', 'pct_b', 'prev_w_in_p_p',
                    'prev_w_in_p_b', 'ticker', 'date']]
    df.fillna(0, inplace=True)
    df['active_return'] = df.pct_p * \
        df.prev_w_in_p_p - df.pct_b * df.prev_w_in_p_b
    # allocation
    df['allocation'] = (df.prev_w_in_p_p - df.prev_w_in_p_b) * df.pct_b
    df['selection'] = (df.pct_p - df.pct_b) * df.prev_w_in_p_b
    df['interaction'] = (df.pct_p - df.pct_b) * \
        (df.prev_w_in_p_p - df.prev_w_in_p_b)
    df['notional_return'] = df.allocation + df.selection + df.interaction

    daily_bnb_result = df.groupby(['date']).aggregate(
        {'allocation': 'sum', 'selection': 'sum', 'interaction': 'sum', 'notional_return': 'sum', 'active_return': 'sum'})
    daily_bnb_result['date'] = daily_bnb_result.index

    return daily_bnb_result.reset_index(drop=True)
    # return df


def calcualte_return(df: pd.DataFrame, start, end):
    '''
    calcualte return within a window for each entry of ticker
    inclusive

    this is an intermediate step to calculate attribute
    calculation using the weighted_log_return
    '''
    df = df[(df.time >= start) & (df.time <= end)].copy()
    inter_df = df.sort_values(by=['time'])
    inter_df['cum_log_return'] = inter_df.groupby(
        'ticker')['log_return'].cumsum()
    inter_df['percentage_return'] = np.exp(
        inter_df['cum_log_return']) - 1
    # patch
    df['return'] = inter_df['percentage_return']
    return df


def calculate_weighted_return(df: pd.DataFrame, start=None, end=None):
    '''
    calcualte weighted return within a window for each entry of ticker
inclusive
    calculation using the weighted_log_return
    '''
    if start is None:
        start = df.time.min()
    if end is None:
        end = df.time.max()

    df = df[(df.time >= start) & (df.time <= end)].copy()
    inter_df = df.sort_values(by=['time'])
    inter_df['cum_weighted_log_return'] = inter_df.groupby(
        'ticker')['weighted_log_return'].cumsum()
    inter_df['percentage_return'] = np.exp(
        inter_df['cum_weighted_log_return']) - 1
    # patch
    df['weighted_return'] = inter_df['percentage_return']
    return df


def calculate_log_return(df: pd.DataFrame):
    '''
    patch df with the weighted log return and unweighted log return
    calculated using close price

    an intermediate step to calculate the weighted return,
    the benefit using this is this can be aggregated with any time window
    and work for both portfolio and benchmark
    '''
    inter_df = df.sort_values(by=['time'])
    grouped = inter_df.groupby('ticker')
    inter_df['prev_w'] = grouped['weight'].shift(1)
    inter_df['prev_close'] = grouped['close'].shift(1)
    inter_df['log_return'] = np.log(inter_df['close'] / inter_df['prev_close'])
    inter_df['weighted_log_return'] = inter_df['log_return'] * \
        inter_df['prev_w']
    # patch
    df['log_return'] = inter_df['log_return']
    df['weighted_log_return'] = inter_df['weighted_log_return']

# TODO: change to log return instead
# def calculate_return(df, start, end):
#     df = df[(df.time >= start) & (df.time <= end)].copy()
#     df.sort_values(by=['time'], inplace=True)
#     grouped = df.groupby('ticker')
#     df['return'] = (1 + grouped.pct.cumprod()) - 1
#     return df

# def calculate_norm_return(df, start, end):
#     '''
#     calculate accumlative normalized return within a window
#     for each entry of ticker using norm_pct

#     normalized return is the weighted return in respect to
#     the whole portfolio

#     Return
#     ------
#     dataframe
#         dataframe with return for each ticker
#     '''
#     df = df[(df.time >= start) & (df.time <= end)].copy()
#     df.sort_values(by=['time'], inplace=True)
#     grouped = df.groupby('ticker')
#     df['norm_return'] = (1 + grouped.norm_pct.cumprod()) - 1
#     return df


def _uniformize_time_series(profile_df):
    '''
    a helper function to create analytic_df 

    make each entry in the time series has the same dimension
    by filling none holding stock that was held in previous period has 0 shares and 0 ini_w

    Parameters
    ----------
    profile_df : dataframe
        portfolio profile dataframe or benchmark profile dataframe

    Returns
    -------
    dataframe
        dataframe with uniformized time series
    '''
    # Get unique time periods
    time_periods = profile_df['time'].unique()
    time_periods = sorted(time_periods)

    # Iterate through time periods
    for i in range(len(time_periods) - 1):
        current_period = time_periods[i]
        next_period = time_periods[i + 1]

        current_df = profile_df[profile_df['time'] == current_period]
        next_df = profile_df[profile_df['time'] == next_period]

        tickers_current = current_df['ticker']
        tickers_next = next_df['ticker']

        # row that has ticker not in tickers_next
        missing_tickers = current_df[~tickers_current.isin(
            tickers_next)].copy()

        if len(missing_tickers) != 0:
            missing_tickers.time = next_period
            missing_tickers.shares = 0
            missing_tickers.ini_w = 0
            profile_df = pd.concat(
                [profile_df, missing_tickers], ignore_index=True)
    # reset index
    return profile_df.reset_index(drop=True)


def create_analytic_df(price_df, profile_df):
    '''
    create a df for analysis processing

    filling information from profile df to stock price df

    '''
    # daily stock price use begin of the date, need to convert profile_df day to begin of the date
    profile_df['time'] = profile_df['time'].map(
        lambda x: datetime(x.year, x.month, x.day))
    
    # make every time entry the same dimension
    uni_profile_df = _uniformize_time_series(profile_df)
    
    # TODO handle rename column here
    df = price_df.merge(uni_profile_df, on=['ticker', 'time'], how='outer')
    df.sort_values(by=['ticker', 'time'], inplace=True)
    # add sector, aggregate_sector, display_name and name to missing rows
    grouped = df.groupby('ticker')
    df['sector'] = grouped['sector'].fillna(method='ffill')
    df['aggregate_sector'] = grouped['aggregate_sector'].fillna(method='ffill')
    df['display_name'] = grouped['display_name'].fillna(method='ffill')
    df['name'] = grouped['name'].fillna(method='ffill')

    # assign missing ini_w
    df['ini_w'] = grouped['ini_w'].fillna(method='ffill')
    # assign missing shares, benchmark doesn't have shares
    if ('shares' in df.columns):
        df['shares'] = grouped['shares'].fillna(method='ffill')
    # remove profile and price entry before first profile entry from df
    df.dropna(subset=['ini_w'], inplace=True)
    df.dropna(subset=['close'], inplace=True)
    # remove where weight is 0
    df = df[df['ini_w'] != 0].copy()
    return df


def calculate_attributes_between_dates(start, end, calculated_p_stock, calculated_b_stock):
    '''
    calculate the attributes to explain the active return between two time series entries, the time series entry
    right after or at start and another time serie right before or at end
    return a df with attributes to explain the active return between start and end time series
    '''
    p_ranged_df = calculated_p_stock[(calculated_p_stock.date >= start) & (
        calculated_p_stock.date <= end)]
    b_ranged_df = calculated_b_stock[(calculated_b_stock.date >= start) & (
        calculated_b_stock.date <= end)]

    # return and weight of portfolio
    p_start_df = p_ranged_df[p_ranged_df.date == p_ranged_df.date.min()]
    p_end_df = p_ranged_df[p_ranged_df.date == p_ranged_df.date.max()]
    p_concat = pd.concat([p_start_df, p_end_df])
    # pct is unweighted return
    p_concat['pct'] = p_concat.groupby('ticker')['close'].pct_change()
    p_concat = p_concat.dropna(subset=['pct'])
    p_concat['prev_w_in_p'] = p_concat['ticker'].map(
        lambda x: p_start_df[p_start_df.ticker == x]['prev_w_in_p'].values[0])
    # p_concatp_concat[['date', 'display_name', 'pct',
    #           'close', 'prev_w_in_p', 'ini_w_in_p']]
    # return and weight of benchmark
    b_start_df = b_ranged_df[b_ranged_df.date == b_ranged_df.date.min()]
    b_end_df = b_ranged_df[b_ranged_df.date == b_ranged_df.date.max()]
    b_concat = pd.concat([b_start_df, b_end_df])
    b_concat['pct'] = b_concat.groupby('ticker')['close'].pct_change()
    b_concat = b_concat.dropna(subset=['pct'])
    b_concat['prev_w_in_p'] = b_concat['ticker'].map(
        lambda x: b_concat[b_concat.ticker == x]['prev_w_in_p'].values[0])
    # b_concat = b_concat[['date', 'display_name', 'pct',
    #           'close', 'prev_w_in_p', 'ini_w_in_p']]
    merged_df = pd.merge(b_concat, p_concat, on=[
                         'ticker', 'date'], suffixes=('_b', '_p'), how='outer')
    df = merged_df[['display_name_p', 'display_name_b', 'ticker',
                    'pct_b', 'pct_p', 'prev_w_in_p_b', 'prev_w_in_p_p']].copy()

    # indicate weather stock is in portfolio
    df['in_portfolio'] = False
    df.loc[df.display_name_p.notnull(), 'in_portfolio'] = True

    # fill display_name
    df['display_name_p'] = df['display_name_p'].fillna(df['display_name_b'])
    df['display_name_b'] = df['display_name_b'].fillna(df['display_name_p'])

    # treat nan weight and pct as 0
    df.fillna(0, inplace=True)

    # allocation, selection, interaction, notional return, active return
    df['allocation'] = (df.prev_w_in_p_p - df.prev_w_in_p_b) * df.pct_b
    df['selection'] = (df.pct_p - df.pct_b) * df.prev_w_in_p_b
    df['interaction'] = (df.pct_p - df.pct_b) * \
        (df.prev_w_in_p_p - df.prev_w_in_p_b)
    df['notional_return'] = df.allocation + df.selection + df.interaction
    # weighted return
    df['return'] = df.prev_w_in_p_p * df.pct_p
    # weight * prev_w is the weighted return
    df['active_return'] = df.prev_w_in_p_p * \
        df.pct_p - df.prev_w_in_p_b * df.pct_b

    return df


def calculate_cum_pnl(df, start, end):
    '''return df with cumulative pnl within a window'''
    df = df[df.time.between(start, end, inclusive='both')].copy()
    df.sort_values(by=['time'], inplace=True)
    grouped = df.groupby('ticker')
    df['cum_pnl'] = grouped['pnl'].cumsum()
    return df


def change_resolution(df, freq='W'):
    '''
    aggregate by keeping the first entry of the freq period,
    the resolution of the df, default to weekly
    '''
    df['freq'] = pd.to_datetime(df['date']).dt.to_period(freq)
    return df.groupby('freq').first().reset_index()


def calculate_pnl(df):
    '''
    patch df with pnl column

    pnl is calculated using cash
    '''
    df.sort_values(by=['time'], inplace=True)
    grouped = df.groupby('ticker')
    df['pnl'] = grouped['cash'].diff()


def calculate_pct(df):
    '''
    calculate pct using close price
    '''
    df.sort_values(by=['time'], inplace=True)
    grouped = df.groupby('ticker')
    df['pct'] = grouped['close'].pct_change()


def calculate_norm_pct(df):
    '''
    use weight to calculate the norm pct
    '''
    df['norm_pct'] = df.weight * df.pct


def calculate_weight_using_cash(df):
    '''
    patch df with current weight for each entry
    use cash to calculate weight

    Parameters
    ----------
    df : dataframe
        dataframe with processed cash column

    '''
    df['weight'] = float('nan')
    grouped = df.groupby('time')
    df.weight = grouped.cash.transform(lambda x: x / x.sum())


def calculate_cash(df):
    '''
    patch df with cash column
    cash = shares * close

    Parameters
    ----------
    df : dataframe
        dataframe with processed shares and close column
    '''
    df['cash'] = df['shares'] * df['close']


def calculate_weight_using_pct(df):
    '''
    calculate weight using weight column

    calculate benchmark stock using this, since benchmark stock
    doesn't have share information

    Parameters
    ----------
    df: dataframe
        dataframe with weight, pct on closing and ini_w columns
    '''
    df.sort_values(by=['time'], inplace=True)
    grouped = df.groupby('ticker')
    for _, group in grouped:
        prev_row = None
        for index, row in group.iterrows():
            if prev_row is None:
                prev_row = df.loc[index]
                continue
            df.loc[index, 'weight'] = prev_row['weight'] * (1 + row['pct'])
            prev_row = df.loc[index]
    # normalize weight
    grouped = df.groupby('time')
    normed_weight = grouped['weight'].transform(lambda x: x / x.sum())
    df['weight'] = normed_weight


def calculate_periodic_BHB(agg_b, agg_p):
    '''
    calculate periodic BHB for each ticker entry

    the accumulated return of a period will be used,
    the weight is the weight at the began of the period

    Note:
    ----
    if only one entry in a period, the return will be nan,

    Parameters
    ----------
    agg_b : pd.DataFrame
        aggregated benchmark analytic_df
    agg_p : pd.DataFrame
        aggregated portfolio analytic_df

    Returns
    -------
    pd.DataFrame
        periodic BHB result contain allocation, interaction, selection, nominal_active_return and active_return

    '''
    # merge both
    agg_b['in_benchmark'] = True
    agg_p['in_portfolio'] = True
    selected_column = ['ticker', 'aggregate_sector',
                       'prev_weight', 'return', 'period', 'display_name']
    columns_to_fill = ['return_b', 'return_p',
                       'prev_weight_p', 'prev_weight_b']
    merged_df = pd.merge(agg_b[['in_benchmark'] + selected_column],
                         agg_p,
                         how='outer',
                         on=['period', 'ticker'],
                         suffixes=('_b', '_p'))
    merged_df[columns_to_fill] = merged_df[columns_to_fill].fillna(0)

    # complement fill aggregate_sector and display_name
    post_process_merged_analytic_df(merged_df)
    # merged_df['in_portfolio'].fillna(False, inplace=True)
    # merged_df['in_benchmark'].fillna(False, inplace=True)
    # merged_df['aggregate_sector_b'].fillna(
    #     merged_df['aggregate_sector_p'], inplace=True)
    # merged_df["display_name_b"].fillna(merged_df.display_name_p, inplace=True)
    # merged_df.rename(columns={'aggregate_sector_b': 'aggregate_sector',
    #                           'display_name_b': 'display_name',
    #                           }, inplace=True)
    # merged_df.drop(columns=['aggregate_sector_p',
    #                'display_name_p'], inplace=True)

    # calculate active return
    merged_df['weighted_return_p'] = merged_df['return_p'] * \
        merged_df['prev_weight_p']
    merged_df['weighted_return_b'] = merged_df['return_b'] * \
        merged_df['prev_weight_b']
    merged_df['active_return'] = merged_df['weighted_return_p'] - \
        merged_df['weighted_return_b']

    # allocation, interaction, selection and nominal active return
    merged_df['allocation'] = (
        merged_df.prev_weight_p - merged_df.prev_weight_b) * merged_df.return_b
    merged_df['interaction'] = (merged_df.return_p - merged_df.return_b) \
        * (merged_df.prev_weight_p - merged_df.prev_weight_b)
    merged_df['selection'] = (
        merged_df.return_p - merged_df.return_b) * merged_df.prev_weight_b
    merged_df['notional_active_return'] = merged_df['allocation'] + \
        merged_df['interaction'] + merged_df['selection']
    return merged_df


def post_process_merged_analytic_df(merged_df):
    '''
    fill nan in some column on merged analytic_df

    patch aggregate_sector, display_name, in_portfolio, in_benchmark,

    '''
    # merge both
    merged_df['in_portfolio'].fillna(False, inplace=True)
    merged_df['in_benchmark'].fillna(False, inplace=True)
    # complement fill aggregate_sector and display_name
    merged_df['aggregate_sector_b'].fillna(
        merged_df['aggregate_sector_p'], inplace=True)
    merged_df["display_name_b"].fillna(merged_df.display_name_p, inplace=True)
    merged_df.rename(columns={'aggregate_sector_b': 'aggregate_sector',
                              'display_name_b': 'display_name',
                              }, inplace=True)
    merged_df.drop(columns=['aggregate_sector_p',
                   'display_name_p'], inplace=True)


def calculate_weighted_pct(df):
    '''
    patch df with weighted pct, if pct is not calculated patch that as well
    '''
    if 'pct' not in df.columns:
        calculate_pct(df)
    df['weighted_pct'] = df['pct'] * df['weight']


def aggregate_analytic_df_by_period(df, freq):
    '''
    return an aggregated analytic_df with weekly, monthly, yearly or daily frequency

    each ticker will have 1 rows for each period, 
    cash is the value at the end of the period.
    shares is the # of shares at end of the period.
    prev_weight is the weight of that ticker entry at end of previous period.
    log_return is sum of log_return within the period.
    weight is the weight of that ticker entry at end of the period.
    return is from last of previous period to last of current period.

    Parameters
    ----------
    df : pd.DataFrame
        analytic_df, dateframe of stock price has weight, log_return information
    freq : str
        weekly: 'W-MON' start on tuesday end on monday,
        monthly: 'M', 
        yearly: 'Y', 
        daily: "D"

    Returns
    -------
    pd.DataFrame
        aggregated analytic_df with weekly, monthly, yearly or daily frequency
    '''
    # create prev_weight
    df.sort_values(by=['time'], inplace=True)
    grouped = df.groupby('ticker')
    df['prev_weight'] = grouped['weight'].shift(1)

    # aggregate by summing log return and keep the first prev_weight
    df['period'] = df.time.dt.to_period(freq)
    grouped = df.groupby(['period', 'ticker'])
    agg_rules = {'display_name': 'first',
                 'aggregate_sector': 'first',
                 'prev_weight': 'first',
                 'log_return': 'sum',
                 'weight': 'last'
                 }

    # handle aggregate on benchamrk
    if 'cash' in df.columns and 'shares' in df.columns:
        agg_rules['cash'] = 'last'
        agg_rules['shares'] = 'last'

    # aggregation
    agg_df = grouped.agg(agg_rules)

    # calculate return by convert sum log return to percentage return
    agg_df['return'] = np.exp(agg_df.log_return) - 1

    # make it a one dimensional dataframe
    agg_df.reset_index(inplace=True)
    return agg_df


def aggregate_bhb_df(df, by="total"):
    keys = ['period', 'aggregate_sector'] if by == 'sector' else ['period']
    agg_df = df.groupby(keys)[['active_return',
                               'allocation',
                               'interaction',
                               'selection',
                               'notional_active_return']].sum()
    return agg_df


def calculate_draw_down_on(df, key='weighted_return'):
    '''
    calculate draw down on anlaytic df based on either return or accumulative pnl

    Parameters
    ----------
    df : pd.DataFrame
        analytic df
    key : str, optional
        cum_pnl or weighted_return, by default 'weighted_return'
    '''
    if key not in df.columns:
        raise ValueError(f'{key} not in df')
    else:
        df = df.sort_values(by=['time'])
        df[f'rolling_max_{key}'] = df[key].rolling(
            window=len(df), min_periods=1).max()
        if key == 'pnl':
            df['drawn_down'] = df[key] / df[f'rolling_max_{key}']

        else:
            df['drawn_down'] = (1 + df[key]) / (1 + df[f'rolling_max_{key}'])

        return df

# def calculate_accumulative_pnl(df):
#     '''
#     calculate accumulative pnl on analytic df
#     '''
#     df = df.sort_values(by=['time'])
#     df['accumulative_pnl'] = df.groupby('ticker')['pnl'].rolling(

#     )
#     return df