Spaces:
Runtime error
Runtime error
File size: 9,056 Bytes
70e803f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import torch
from clip2latent import models
from PIL import Image
device = "cuda"
model_choices = {
"faces": {
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.ckpt",
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.yaml",
},
"landscape": {
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.ckpt",
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.yaml",
}
}
model_cache = {}
for k, v in model_choices.items():
checkpoint = v["checkpoint"]
cfg_file = v["config"]
# Moving to the cpu seems to break the model, so just put all on the gpu
model_cache[k] = models.Clip2StyleGAN(cfg_file, device, checkpoint)
@torch.no_grad()
def infer(prompt, model_select, n_samples, scale):
model = model_cache[model_select]
images, _ = model(prompt, n_samples_per_txt=n_samples, cond_scale=scale, skips=250, clip_sort=True)
images = images.cpu()
make_im = lambda x: (255*x.clamp(-1, 1)/2 + 127.5).to(torch.uint8).permute(1,2,0).numpy()
images = [Image.fromarray(make_im(x)) for x in images]
return images
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #9d66e5;
background: #9d66e5;
}
input[type='range'] {
accent-color: #9d66e5;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .logo{ filter: invert(1); }
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
examples = [
[
'a photograph of a happy person wearing sunglasses by the sea',
'faces',
2,
2,
],
[
'a photograph of Captain Jean Luc Picard',
'faces',
2,
2,
],
[
'a mountain in the middle of the sea',
'landscape',
2,
2,
],
[
'The sun setting over the sea',
'landscape',
2,
2,
],
]
def main():
block = gr.Blocks(css=css)
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="https://lambdalabs.com/static/images/lambda-logo.svg" alt="Lambda Logo"
style="margin: auto; max-width: 7rem;">
<h1 style="font-weight: 900; font-size: 3rem;">
clip2latent
</h1>
</div>
<p style="font-size: 94%">
Official demo for <em>clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</em>, accepted to BMVC 2022
</p>
<p style="margin-bottom: 10px; font-size: 94%">
Get the <a href="https://github.com/justinpinkney/clip2latent">code on GitHub</a>, see the <a href="#">paper on Arxiv</a>.
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Row(elem_id="advanced-options"):
model_select = gr.Dropdown(label="Model", choices=["faces", "landscape"], value="faces",)
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=10, value=2, step=0.5
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, model_select, samples, scale], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, model_select, samples, scale], outputs=gallery)
btn.click(infer, inputs=[text, model_select, samples, scale], outputs=gallery)
gr.HTML(
"""
<div class="footer">
<p> Gradio Demo by Lambda Labs
</p>
</div>
<div class="acknowledgments">
<img src="https://raw.githubusercontent.com/justinpinkney/clip2latent/main/images/headline-large.jpeg"></img>
<br>
<h2 style="font-size:1.5em">clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</h2>
<p>Justin N. M. Pinkney and Chuan Li @ <a href="https://lambdalabs.com/">Lambda Inc.</a>
<br>
<br>
<em>Abstract:</em>
We introduce a new method to efficiently create text-to-image models from a pre-trained CLIP and StyleGAN.
It enables text driven sampling with an existing generative model without any external data or fine-tuning.
This is achieved by training a diffusion model conditioned on CLIP embeddings to sample latent vectors of a pre-trained StyleGAN, which we call <em>clip2latent</em>.
We leverage the alignment between CLIP’s image and text embeddings to avoid the need for any text labelled data for training the conditional diffusion model.
We demonstrate that clip2latent allows us to generate high-resolution (1024x1024 pixels) images based on text prompts with fast sampling, high image quality, and low training compute and data requirements.
We also show that the use of the well studied StyleGAN architecture, without further fine-tuning, allows us to directly apply existing methods to control and modify the generated images adding a further layer of control to our text-to-image pipeline.
</p>
<br>
<p>Trained using <a href="https://lambdalabs.com/service/gpu-cloud">Lambda GPU Cloud</a></p>
</div>
"""
)
block.queue()
block.launch()
if __name__ == "__main__":
main() |