File size: 2,994 Bytes
eb450e3
6a03bd2
582395b
eb450e3
6a03bd2
eb450e3
b51f88d
5113576
6a03bd2
 
 
 
 
19d5988
6a03bd2
 
 
 
 
582395b
6a03bd2
 
 
 
 
 
 
e3c453c
6a03bd2
3cfecb5
6a03bd2
 
 
fa8b0f1
 
 
582395b
bd918d5
 
19d5988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd918d5
da0a172
5113576
bd918d5
 
 
 
 
19d5988
 
bd918d5
 
 
 
5113576
eb450e3
19d5988
bd918d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
from huggingface_hub import InferenceClient
import time

client = InferenceClient("lambdaindie/lambdai")

css = """
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');

{
font-family: 'JetBrains Mono', monospace !important;
}


body {
background-color: #111;
color: #e0e0e0;
}

.markdown-think {
background-color: #1e1e1e;
border-left: 4px solid #555;
padding: 10px;
margin-bottom: 8px;
font-style: italic;
white-space: pre-wrap;
animation: pulse 1.5s infinite ease-in-out;
}

@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1.0; }
100% { opacity: 0.6; }
}
"""

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}] if system_message else []

    for user, assistant in history:  
        if user:  
            messages.append({"role": "user", "content": user})  
        if assistant:  
            messages.append({"role": "assistant", "content": assistant})  

    thinking_prompt = messages + [{  
        "role": "user",  
        "content": f"{message}\n\nThink a bit step-by-step before answering."  
    }]  

    reasoning = ""  
    yield '<div class="markdown-think">Thinking...</div>'  

    start = time.time()  

    for chunk in client.chat_completion(  
        thinking_prompt,  
        max_tokens=max_tokens,  
        stream=True,  
        temperature=temperature,  
        top_p=top_p,  
    ):  
        token = chunk.choices[0].delta.content or ""  
        reasoning += token  
        styled_thought = f'<div class="markdown-think">{reasoning.strip()}</div>'  
        yield styled_thought  

    elapsed = time.time() - start  

    yield f"""  
<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888;  
            font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;">  
    Pensou por {elapsed:.1f} segundos  
</div>  
"""  

    time.sleep(2)  

    final_prompt = messages + [  
        {"role": "user", "content": message},  
        {"role": "assistant", "content": reasoning.strip()},  
        {"role": "user", "content": "Now answer based on your reasoning above."}  
    ]  

    final_answer = ""  
    for chunk in client.chat_completion(  
        final_prompt,  
        max_tokens=max_tokens,  
        stream=True,  
        temperature=temperature,  
        top_p=top_p,  
    ):  
        token = chunk.choices[0].delta.content or ""  
        final_answer += token  
        yield final_answer.strip()

demo = gr.ChatInterface(
    fn=respond,
    title="λambdAI",
    theme=gr.themes.Base(),
    css=css,
    additional_inputs=[
        gr.Textbox(value="",
        label="System Message"),
        gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
        gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
    ]
)

if name == "main":
    demo.launch()