File size: 6,222 Bytes
22d4eb1
 
 
 
 
 
 
 
 
7dd17d6
 
 
22d4eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd17d6
22d4eb1
 
 
7dd17d6
 
 
9bfa07c
7dd17d6
 
 
 
 
 
 
 
 
 
22d4eb1
9bfa07c
7dd17d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22d4eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64


def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
    result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed}
    print(result)

    language = detect(prompt)
    
    if language == 'ru':
        prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
        print(prompt)

    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)

    width = 1024
    height = 1024
    url_sd1 = os.getenv("url_sd1")
    url_sd2 = os.getenv("url_sd2")
    url_sd3 = os.getenv("url_sd3")
    
    print(task)
    try:
        print('n_1')
        with closing(create_connection(f"{url_sd3}", timeout=60)) as conn:
            conn.send('{"fn_index":3,"session_hash":""}')
            conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
            while True:
                status = json.loads(conn.recv())['msg']
                if status == 'estimation':
                    continue
                if status == 'process_starts':
                    break
            photo = json.loads(conn.recv())['output']['data'][0][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
    except:
        print("n_2")
        if task == 'Stable Diffusion XL 1.0':
            model = 'sd_xl_base_1.0'
        if task == 'Crystal Clear XL':
            model = '[3d] crystalClearXL_ccxl_97637'
        if task == 'Juggernaut XL':
            model = '[photorealistic] juggernautXL_version2_113240'
        if task == 'DreamShaper XL':
            model = '[base model] dreamshaperXL09Alpha_alpha2Xl10_91562'
        if task == 'SDXL Niji':
            model = '[midjourney] sdxlNijiV51_sdxlNijiV51_112807'
        if task == 'Cinemax SDXL':
            model = '[movie] cinemaxAlphaSDXLCinema_alpha1_107473'
        if task == 'NightVision XL':
            model = '[photorealistic] nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098'
        
        negative = negative_prompt
        
        try:
            with closing(create_connection(f"{url_sd1}")) as conn:
                conn.send('{"fn_index":231,"session_hash":""}')
                conn.send(f'{{"data":["task()","{prompt}","{negative}",[],{steps},"{sampler}",false,false,1,1,{cfg},{seed},-1,0,0,0,false,{width},{height},false,0.7,2,"Lanczos",0,0,0,"Use same sampler","","",[],"None",true,"{model}","Automatic",null,null,null,false,false,"positive","comma",0,false,false,"","Seed","",[],"Nothing","",[],"Nothing","",[],true,false,false,false,0,null,null,false,null,null,false,null,null,false,50,[],"","",""],"event_data":null,"fn_index":231,"session_hash":""}}')
                print(conn.recv())
                print(conn.recv())
                print(conn.recv())
                print(conn.recv())
                photo = f"{url_sd2}" + str(json.loads(conn.recv())['output']['data'][0][0]["name"])
            return photo
        except:
            return None

css = """
#generate {
    width: 100%;
    background: #e253dd !important;
    border: none;
    border-radius: 50px;
    outline: none !important;
    color: white;
}
#generate:hover {
    background: #de6bda !important;
    outline: none !important;
    color: #fff;
    }
footer {visibility: hidden !important;}
"""

with gr.Blocks(css=css) as demo:

    with gr.Tab("Базовые настройки"):
        with gr.Row():
            prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
        with gr.Row():
            task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Модель нейросети:", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL', 
                                                                                                              'Juggernaut XL', 'DreamShaper XL',
                                                                                                              'SDXL Niji', 'Cinemax SDXL', 'NightVision XL'])
    with gr.Tab("Расширенные настройки"):
        with gr.Row():
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
        with gr.Row():
            sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
                "Euler", "Euler a", "Heun", "DPM++ 2M", "DPM++ SDE", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
        with gr.Row():
            steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
        with gr.Row():
            cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
        with gr.Row():
            seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
    with gr.Column():
        text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
    with gr.Column(scale=2):
        image_output = gr.Image(show_label=True, label='Результат:', elem_id='image_output')

        text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)
    
demo.queue(concurrency_count=12)
demo.launch()