Spaces:
Runtime error
Runtime error
File size: 1,481 Bytes
89fa300 d9e1ab4 89fa300 5b4f0ac 89fa300 c5d972d 89fa300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
import torch
from PIL import Image
# Function to generate and display image
def generate_and_display_image(prompt):
# Initialize the UNet model
unet = UNet2DConditionModel.from_pretrained("./unet", torch_dtype=torch.float16, variant="fp16")
# Initialize the diffusion pipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipeline.safety_checker = None
pipeline.requires_safety_checker = False
# Set the loaded scheduler in the pipeline
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
# pipeline.to("cuda")
# Set the number of inference steps
inference_steps = 4
# Generate image
image = pipeline(prompt, num_inference_steps=inference_steps, guidance_scale=2).images[0]
image = image.resize((512, 512))
# Display the generated image
st.image(image, caption="Generated Image", use_column_width=True)
# Main function
def main():
st.title(" Medical Images Generation with LLCM")
# Input prompt
prompt = st.text_input("Enter your prompt")
# Button to generate and display image
if st.button("Generate Image"):
if prompt:
generate_and_display_image(prompt)
else:
st.warning("Please provide a prompt.")
if __name__ == "__main__":
main()
|