File size: 1,481 Bytes
89fa300
 
 
 
 
 
 
 
d9e1ab4
89fa300
 
 
 
 
 
 
 
5b4f0ac
89fa300
 
 
 
 
 
 
 
 
 
 
 
 
c5d972d
89fa300
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
import torch
from PIL import Image

# Function to generate and display image
def generate_and_display_image(prompt):
    # Initialize the UNet model
    unet = UNet2DConditionModel.from_pretrained("./unet", torch_dtype=torch.float16, variant="fp16")

    # Initialize the diffusion pipeline
    pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
    pipeline.safety_checker = None
    pipeline.requires_safety_checker = False

    # Set the loaded scheduler in the pipeline
    pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
    # pipeline.to("cuda")

    # Set the number of inference steps
    inference_steps = 4

    # Generate image
    image = pipeline(prompt, num_inference_steps=inference_steps, guidance_scale=2).images[0]
    image = image.resize((512, 512))

    # Display the generated image
    st.image(image, caption="Generated Image", use_column_width=True)

# Main function
def main():
    st.title(" Medical Images Generation with LLCM")

    # Input prompt
    prompt = st.text_input("Enter your prompt")

    # Button to generate and display image
    if st.button("Generate Image"):
        if prompt:
            generate_and_display_image(prompt)
        else:
            st.warning("Please provide a prompt.")

if __name__ == "__main__":
    main()