File size: 10,829 Bytes
9b1761d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
版本管理、兼容推理及模型加载实现。
版本说明:
    1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
    2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
特殊版本说明:
    1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
    1.1.1-dev: dev开发
    2.1:当前版本
"""
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from get_emo import get_emo
from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
from oldVersion.V200.text import symbols as V200symbols
from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
from oldVersion.V111.text import symbols as V111symbols
from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
from oldVersion.V110.text import symbols as V110symbols
from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
from oldVersion.V101.text import symbols as V101symbols

from oldVersion import V111, V110, V101, V200

# 当前版本信息
latest_version = "2.1"

# 版本兼容
SynthesizerTrnMap = {
    "2.0.2-fix": V200SynthesizerTrn,
    "2.0.1": V200SynthesizerTrn,
    "2.0": V200SynthesizerTrn,
    "1.1.1-fix": V111SynthesizerTrn,
    "1.1.1": V111SynthesizerTrn,
    "1.1": V110SynthesizerTrn,
    "1.1.0": V110SynthesizerTrn,
    "1.0.1": V101SynthesizerTrn,
    "1.0": V101SynthesizerTrn,
    "1.0.0": V101SynthesizerTrn,
}

symbolsMap = {
    "2.0.2-fix": V200symbols,
    "2.0.1": V200symbols,
    "2.0": V200symbols,
    "1.1.1-fix": V111symbols,
    "1.1.1": V111symbols,
    "1.1": V110symbols,
    "1.1.0": V110symbols,
    "1.0.1": V101symbols,
    "1.0": V101symbols,
    "1.0.0": V101symbols,
}


def get_net_g(model_path: str, version: str, device: str, hps):
    if version != latest_version:
        net_g = SynthesizerTrnMap[version](
            len(symbolsMap[version]),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model,
        ).to(device)
    else:
        # 当前版本模型 net_g
        net_g = SynthesizerTrn(
            len(symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model,
        ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g


def get_text(text, language_str, hps, device):
    # 在此处实现当前版本的get_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "JP":
        bert = torch.zeros(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "EN":
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language


def get_emo_(reference_audio, emotion):
    emo = (
        torch.from_numpy(get_emo(reference_audio))
        if reference_audio
        else torch.Tensor([emotion])
    )
    return emo


def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    language,
    hps,
    net_g,
    device,
    reference_audio=None,
    emotion=None,
    skip_start=False,
    skip_end=False,
):
    # 支持中日英三语版本
    inferMap_V2 = {
        "2.0.2-fix": V200.infer,
        "2.0.1": V200.infer,
        "2.0": V200.infer,
        "1.1.1-fix": V111.infer_fix,
        "1.1.1": V111.infer,
        "1.1": V110.infer,
        "1.1.0": V110.infer,
    }
    # 仅支持中文版本
    # 在测试中,并未发现两个版本的模型不能互相通用
    inferMap_V1 = {
        "1.0.1": V101.infer,
        "1.0": V101.infer,
        "1.0.0": V101.infer,
    }
    version = hps.version if hasattr(hps, "version") else latest_version
    # 非当前版本,根据版本号选择合适的infer
    if version != latest_version:
        if version in inferMap_V2.keys():
            return inferMap_V2[version](
                text,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                sid,
                language,
                hps,
                net_g,
                device,
            )
        if version in inferMap_V1.keys():
            return inferMap_V1[version](
                text,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                sid,
                hps,
                net_g,
                device,
            )
    # 在此处实现当前版本的推理
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text, language, hps, device
    )
    emo = get_emo_(reference_audio, emotion)
    if skip_start:
        phones = phones[1:]
        tones = tones[1:]
        lang_ids = lang_ids[1:]
        bert = bert[:, 1:]
        ja_bert = ja_bert[:, 1:]
        en_bert = en_bert[:, 1:]
    if skip_end:
        phones = phones[:-1]
        tones = tones[:-1]
        lang_ids = lang_ids[:-1]
        bert = bert[:, :-1]
        ja_bert = ja_bert[:, :-1]
        en_bert = en_bert[:, :-1]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio


def infer_multilang(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    language,
    hps,
    net_g,
    device,
    reference_audio=None,
    emotion=None,
    skip_start=False,
    skip_end=False,
):
    bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
    emo = get_emo_(reference_audio, emotion)
    for idx, (txt, lang) in enumerate(zip(text, language)):
        skip_start = (idx != 0) or (skip_start and idx == 0)
        skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
        (
            temp_bert,
            temp_ja_bert,
            temp_en_bert,
            temp_phones,
            temp_tones,
            temp_lang_ids,
        ) = get_text(txt, lang, hps, device)
        if skip_start:
            temp_bert = temp_bert[:, 1:]
            temp_ja_bert = temp_ja_bert[:, 1:]
            temp_en_bert = temp_en_bert[:, 1:]
            temp_phones = temp_phones[1:]
            temp_tones = temp_tones[1:]
            temp_lang_ids = temp_lang_ids[1:]
        if skip_end:
            temp_bert = temp_bert[:, :-1]
            temp_ja_bert = temp_ja_bert[:, :-1]
            temp_en_bert = temp_en_bert[:, :-1]
            temp_phones = temp_phones[:-1]
            temp_tones = temp_tones[:-1]
            temp_lang_ids = temp_lang_ids[:-1]
        bert.append(temp_bert)
        ja_bert.append(temp_ja_bert)
        en_bert.append(temp_en_bert)
        phones.append(temp_phones)
        tones.append(temp_tones)
        lang_ids.append(temp_lang_ids)
    bert = torch.concatenate(bert, dim=1)
    ja_bert = torch.concatenate(ja_bert, dim=1)
    en_bert = torch.concatenate(en_bert, dim=1)
    phones = torch.concatenate(phones, dim=0)
    tones = torch.concatenate(tones, dim=0)
    lang_ids = torch.concatenate(lang_ids, dim=0)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        emo = emo.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio