File size: 19,574 Bytes
7bd4255
438c90e
 
a5ba058
0ec25a0
7bd4255
0ec25a0
7bd4255
438c90e
 
0ec25a0
438c90e
 
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438c90e
0ec25a0
438c90e
 
 
0ec25a0
 
 
 
 
 
 
 
 
438c90e
7bd4255
0ec25a0
 
 
 
 
 
 
 
 
7bd4255
438c90e
a5ba058
0ec25a0
 
 
438c90e
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba058
0ec25a0
 
 
 
 
 
 
 
 
 
 
a5ba058
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd4255
 
a5ba058
 
 
7bd4255
0ec25a0
a5ba058
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba058
 
 
 
 
 
 
 
 
 
 
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba058
 
 
 
 
 
 
 
 
 
0ec25a0
a5ba058
 
0ec25a0
 
7bd4255
a5ba058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec25a0
 
a5ba058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec25a0
a5ba058
 
 
0ec25a0
 
 
a5ba058
0ec25a0
 
 
 
 
 
7bd4255
0ec25a0
 
 
 
7bd4255
0ec25a0
 
 
 
 
 
 
 
 
 
a5ba058
 
 
 
 
 
 
 
 
 
 
 
0ec25a0
 
a5ba058
 
 
 
 
 
0ec25a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba058
 
0ec25a0
 
 
a5ba058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec25a0
 
 
a5ba058
 
 
7bd4255
 
 
 
0ec25a0
 
 
 
7bd4255
0ec25a0
7bd4255
0ec25a0
7bd4255
0ec25a0
7bd4255
0ec25a0
a5ba058
0ec25a0
a5ba058
7bd4255
0ec25a0
7bd4255
0ec25a0
 
 
 
 
7bd4255
0ec25a0
7bd4255
 
 
438c90e
 
7bd4255
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import gradio as gr
import requests
import json
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering

from datasets import load_dataset
import datasets
import plotly.io as pio
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
from sklearn.metrics import confusion_matrix
import importlib
import torch
from dash import Dash, html, dcc
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score


def load_model(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str):
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

  if model_type == "text_classification":
      dataset = load_dataset(dataset_name, config_name)
      num_labels = len(dataset["train"].features["label"].names)

      if "roberta" in model_name_or_path.lower():
        from transformers import RobertaForSequenceClassification
        model = RobertaForSequenceClassification.from_pretrained(
        model_name_or_path, num_labels=num_labels)
      else:
        model = AutoModelForSequenceClassification.from_pretrained(
            model_name_or_path, num_labels=num_labels)
  elif model_type == "token_classification":
      dataset = load_dataset(dataset_name, config_name)
      num_labels = len(
          dataset["train"].features["ner_tags"].feature.names)
      model = AutoModelForTokenClassification.from_pretrained(
          model_name_or_path, num_labels=num_labels)
  elif model_type == "question_answering":
      model = AutoModelForQuestionAnswering.from_pretrained(model_name_or_path)
  else:
      raise ValueError(f"Invalid model type: {model_type}")

  return tokenizer, model


def test_model(tokenizer, model, test_data: list, label_map: dict):
  results = []
  for text, _, true_label in test_data:
      inputs = tokenizer(text, return_tensors="pt",
                        truncation=True, padding=True)
      outputs = model(**inputs)
      pred_label = label_map[int(outputs.logits.argmax(dim=-1))]
      results.append((text, true_label, pred_label))
  return results


def generate_label_map(dataset):
  if "label" not in dataset.features or dataset.features["label"] is None:
      return {}
      
  if isinstance(dataset.features["label"], datasets.ClassLabel):
      num_labels = dataset.features["label"].num_classes
      label_map = {i: label for i, label in enumerate(dataset.features["label"].names)}
  else:
      num_labels = len(set(dataset["label"]))
      label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
  return label_map

# Explain fairness score: https://arxiv.org/pdf/1908.09635.pdf
def calculate_fairness_score(results, label_map):
  true_labels = [r[1] for r in results]
  pred_labels = [r[2] for r in results]

  # Overall accuracy
  # accuracy = (true_labels == pred_labels).mean()
  accuracy = accuracy_score(true_labels, pred_labels)
  # Calculate confusion matrix for each group
  group_names = label_map.values()
  group_cms = {}
  for group in group_names:
      true_group_indices = [i for i, label in enumerate(true_labels) if label == group]
      pred_group_labels = [pred_labels[i] for i in true_group_indices]
      true_group_labels = [true_labels[i] for i in true_group_indices]

      cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
      group_cms[group] = cm

  # Calculate fairness score which means the average difference between confusion matrices
  score = 0
  for i, group1 in enumerate(group_names):
      for j, group2 in enumerate(group_names):
          if i < j:
              cm1 = group_cms[group1]
              cm2 = group_cms[group2]
              diff = np.abs(cm1 - cm2)
              score += (diff.sum() / 2) / cm1.sum()

  return accuracy, score

# Per-class metrics means the metrics for each class, and the class is defined by the label_map
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
    unique_labels = sorted(label_map.values())
    metrics = []
        
    if metric == 'accuracy':
        for label in unique_labels:
            label_indices = [i for i, true_label in enumerate(true_labels) if true_label == label]
            true_label_subset = [true_labels[i] for i in label_indices]
            pred_label_subset = [pred_labels[i] for i in label_indices]
            accuracy = accuracy_score(true_label_subset, pred_label_subset)
            metrics.append(accuracy)
    elif metric == 'f1':
        f1_scores = f1_score(true_labels, pred_labels, labels=unique_labels, average=None)
        metrics = f1_scores.tolist()
    else:
        raise ValueError(f"Invalid metric: {metric}")

    return metrics

def generate_fairness_statement(accuracy, fairness_score):
    accuracy_level = "high" if accuracy >= 0.85 else "moderate" if accuracy >= 0.7 else "low"
    fairness_level = "low" if fairness_score <= 0.15 else "moderate" if fairness_score <= 0.3 else "high"

    # statement = f"The model has a {accuracy_level} overall accuracy of {accuracy * 100:.2f}% and a {fairness_level} fairness score of {fairness_score:.2f}. "
    statement = f"Assessment: "
        
    if fairness_level == "low":
        statement += f"The low fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model is relatively fair and does not exhibit significant bias across different groups."
    elif fairness_level == "moderate":
        statement += f"The moderate fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) suggest that the model may have some bias across different groups, and further investigation is needed to ensure it does not disproportionately affect certain groups."
    else:
        statement += f"The high fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model exhibits significant bias across different groups, and it's recommended to address this issue to ensure fair predictions for all groups."

    return statement

def generate_visualization(visualization_type, results, label_map, chart_mode):
    true_labels = [r[1] for r in results]
    pred_labels = [r[2] for r in results]
    
    background_color = "white" if chart_mode == "Light" else "black"
    text_color = "black" if chart_mode == "Light" else "white"

    if visualization_type == "confusion_matrix":
        return generate_report_card(results, label_map, chart_mode)["fig"]
    elif visualization_type == "per_class_accuracy":
        per_class_accuracy = calculate_per_class_metrics(
            true_labels, pred_labels, label_map, metric='accuracy')
            
        colors = px.colors.qualitative.Plotly
        fig = go.Figure()
        for i, label in enumerate(label_map.values()):
            fig.add_trace(go.Bar(
                x=[label],
                y=[per_class_accuracy[i]],
                name=label,
                marker_color=colors[i % len(colors)]
            ))
            
        fig.update_xaxes(showgrid=True, gridwidth=1,
                         gridcolor='LightGray', linecolor='black', linewidth=1)
        fig.update_yaxes(showgrid=True, gridwidth=1,
                         gridcolor='LightGray', linecolor='black', linewidth=1)
        fig.update_layout(plot_bgcolor=background_color,
                          paper_bgcolor=background_color, 
                          font=dict(color=text_color),
                          title='Per-Class Accuracy',
                          xaxis_title='Class', yaxis_title='Accuracy'
                          
                          )
        return fig
    elif visualization_type == "per_class_f1":
        per_class_f1 = calculate_per_class_metrics(
            true_labels, pred_labels, label_map, metric='f1')
            
        colors = px.colors.qualitative.Plotly
        fig = go.Figure()
        for i, label in enumerate(label_map.values()):
            fig.add_trace(go.Bar(
                x=[label],
                y=[per_class_f1[i]],
                name=label,
                marker_color=colors[i % len(colors)]
            ))
            
        fig.update_xaxes(showgrid=True, gridwidth=1,
                         gridcolor='LightGray', linecolor='black', linewidth=1)
        fig.update_yaxes(showgrid=True, gridwidth=1,
                         gridcolor='LightGray', linecolor='black', linewidth=1)
        fig.update_layout(plot_bgcolor=background_color,
                          paper_bgcolor=background_color,
                          font=dict(color=text_color),
                          title='Per-Class F1-Score',
                          xaxis_title='Class', yaxis_title='F1-Score'
                          )
        return fig
    elif visualization_type == "interactive_dashboard":
        return generate_interactive_dashboard(results, label_map, chart_mode)
    else:
        raise ValueError(f"Invalid visualization type: {visualization_type}")

def generate_interactive_dashboard(results, label_map, chart_mode):
    true_labels = [r[1] for r in results]
    pred_labels = [r[2] for r in results]
    
    colors = ['#EF553B', '#00CC96', '#636EFA',   '#AB63FA', '#FFA15A',
              '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']
    
    background_color = "white" if chart_mode == "Light" else "black"
    text_color = "black" if chart_mode == "Light" else "white"

    # Create confusion matrix
    cm_fig = generate_report_card(results, label_map, chart_mode)["fig"]

    # Create per-class accuracy bar chart
    pca_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy')
    pca_fig = go.Bar(x=list(label_map.values()), y=pca_data, marker=dict(color=colors))

    # Create per-class F1-score bar chart
    pcf_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='f1')
    pcf_fig = go.Bar(x=list(label_map.values()), y=pcf_data, marker=dict(color=colors))

    # Combine all charts into a mixed subplot
    fig = make_subplots(rows=2, cols=2, shared_xaxes=True, specs=[[{"colspan": 2}, None],
                                               [{}, {}]],
                        print_grid=True,subplot_titles=(
        "Confusion Matrix", "Per-Class Accuracy", "Per-Class F1-Score"))
    fig.add_trace(cm_fig['data'][0], row=1, col=1)
    fig.add_trace(pca_fig, row=2, col=1)
    fig.add_trace(pcf_fig, row=2, col=2)

    fig.update_xaxes(showgrid=True, gridwidth=1,
                     gridcolor='LightGray', linecolor='black', linewidth=1)
    fig.update_yaxes(showgrid=True, gridwidth=1,
                     gridcolor='LightGray', linecolor='black', linewidth=1)
    # Update layout
    fig.update_layout(height=700, width=650,
                      plot_bgcolor=background_color,
                      paper_bgcolor=background_color,
                      font=dict(color=text_color),
                      title="Fairness Report", showlegend=False
                      )

    return fig

def generate_report_card(results, label_map, chart_mode):
  true_labels = [r[1] for r in results]
  pred_labels = [r[2] for r in results]
  
  background_color = "white" if chart_mode == "Light" else "black"
  text_color = "black" if chart_mode == "Light" else "white"

  cm = confusion_matrix(true_labels, pred_labels)
  
  # Normalize the confusion matrix
  cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

  # Create a custom color scale
  custom_color_scale = np.zeros(cm_normalized.shape, dtype='str')
  for i in range(cm_normalized.shape[0]):
        for j in range(cm_normalized.shape[1]):
            custom_color_scale[i, j] = '#EF553B' if i == j else '#00CC96'

  fig = go.Figure(go.Heatmap(z=cm_normalized,
                            x=list(label_map.values()),
                            y=list(label_map.values()),
                            text=cm,
                            hovertemplate='%{text}',
                             colorscale=[[0, '#EF553B'], [
                                 1, '#00CC96']],
                            showscale=False,
                            zmin=0, zmax=1,
                            customdata=custom_color_scale))

  fig.update_xaxes(showgrid=True, gridwidth=1,
                   gridcolor='LightGray', linecolor='black', linewidth=1)
  fig.update_yaxes(showgrid=True, gridwidth=1,
                    gridcolor='LightGray', linecolor='black', linewidth=1)
  fig.update_layout(
      plot_bgcolor=background_color,
      paper_bgcolor=background_color,
      font=dict(color=text_color),
      height=500, width=600,
      title='Confusion Matrix',
      xaxis=dict(title='Predicted Labels'),
      yaxis=dict(title='True Labels')
  )

  # Create the text output
  # accuracy = pd.Series(true_labels) == pd.Series(pred_labels)
  accuracy = accuracy_score(true_labels, pred_labels, normalize=False)
  fairness_score = calculate_fairness_score(results, label_map)

  per_class_accuracy = calculate_per_class_metrics(
      true_labels, pred_labels, label_map, metric='accuracy')
  per_class_f1 = calculate_per_class_metrics(
        true_labels, pred_labels, label_map, metric='f1')

  report_card = {
      "fig": fig,
      "accuracy": accuracy,
      "fairness_score": fairness_score,
      "per_class_accuracy": per_class_accuracy,
      "per_class_f1": per_class_f1
  }
  return report_card

  # return fig, text_output
  

def generate_insights(custom_text, model_name, dataset_name, accuracy, fairness_score, report_card, generator):
    per_class_metrics = {
        'accuracy': report_card.get('per_class_accuracy', []),
        'f1': report_card.get('per_class_f1', [])
    }

    if not per_class_metrics['accuracy'] or not per_class_metrics['f1']:
        input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. Per-class metrics could not be calculated. Please provide some interesting insights about the fairness and bias of the model."
    else:
        input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. The per-class metrics are: {per_class_metrics}. Please provide some interesting insights about the fairness, bias, and per-class performance."


    insights = generator(input_text, max_length=600,
                        do_sample=True, temperature=0.7)
    return insights[0]['generated_text']


def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int, visualization_type: str, chart_mode: str):
  tokenizer, model = load_model(
      model_type, model_name_or_path, dataset_name, config_name)

  # Load the dataset
  # Add this line to cast num_samples to an integer
  num_samples = int(num_samples)
  dataset = load_dataset(
      dataset_name, config_name, split=f"{dataset_split}[:{num_samples}]")
  test_data = []

  if dataset_name == "glue":
      test_data = [(item["sentence"], None,
        dataset.features["label"].names[item["label"]]) for item in dataset]
  elif dataset_name == "tweet_eval":
      test_data = [(item["text"], None, dataset.features["label"].names[item["label"]])
        for item in dataset]
  else:
      test_data = [(item["sentence"], None,
        dataset.features["label"].names[item["label"]]) for item in dataset]

    #  if model_type == "text_classification":
      #      for item in dataset:
      #          text = item["sentence"]
      #          context = None
      #          true_label = item["label"]
#          test_data.append((text, context, true_label))
    #  elif model_type == "question_answering":
      #      for item in dataset:
      #          text = item["question"]
      #          context = item["context"]
      #          true_label = None
#          test_data.append((text, context, true_label))
    #  else:
#      raise ValueError(f"Invalid model type: {model_type}")

  label_map = generate_label_map(dataset)

  results = test_model(tokenizer, model, test_data, label_map)
  # fig, text_output = generate_report_card(results, label_map)

  # return fig, text_output

  report_card = generate_report_card(results, label_map, chart_mode)
  visualization = generate_visualization(visualization_type, results, label_map, chart_mode)

  per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
      label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
  
  accuracy, fairness_score = calculate_fairness_score(results, label_map)
  fairness_statement = generate_fairness_statement(accuracy, fairness_score)
  
  # Use a GPU if available, otherwise use -1 for CPU.
  generator = pipeline(
      'text-generation', model='gpt2', device=-1)  # Use EleutherAI/gpt-neo-1.3B or EleutherAI/GPT-J-6B for GPT3 for distilgpt2 for GPT2
  per_class_metrics = {
      'accuracy': report_card['per_class_accuracy'],
      'f1': report_card['per_class_f1']
  }
  
  custom_text = fairness_statement
  
  insights = generate_insights(custom_text, model_name_or_path,
                               dataset_name, accuracy, fairness_score, report_card, generator)

  # return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
  # return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
  return (f"{insights}\n\n"
          f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]: .2f}\n\n"
          f"Per-Class Metrics:\n{per_class_metrics_str}"), visualization

interface = gr.Interface(
    fn=app,
    inputs=[
        gr.inputs.Radio(["text_classification", "token_classification",
                        "question_answering"], label="Model Type", default="text_classification"),
        gr.inputs.Textbox(lines=1, label="Model Name or Path",
                          placeholder="ex: distilbert-base-uncased-finetuned-sst-2-english", default="distilbert-base-uncased-finetuned-sst-2-english"),
        gr.inputs.Textbox(lines=1, label="Dataset Name",
                          placeholder="ex: glue", default="glue"),
        gr.inputs.Textbox(lines=1, label="Config Name",
                          placeholder="ex: sst2", default="cola"),
        gr.inputs.Dropdown(
            choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
        gr.inputs.Number(default=100, label="Number of Samples"),
        gr.inputs.Dropdown(
            choices=["interactive_dashboard", "confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="interactive_dashboard"
        ),
        gr.inputs.Radio(["Light", "Dark"], label="Chart Mode", default="Light"),
    ],
    # outputs=gr.Plot(),
    # outputs=gr.outputs.HTML(),
    # outputs=[gr.outputs.HTML(), gr.Plot()],
    outputs=[
        gr.outputs.Textbox(label="Fairness and Bias Metrics"),
        gr.Plot(label="Graph")
    ],
    title="Fairness and Bias Testing",
    description="Enter a model and dataset to test for fairness and bias.",
)

# Define the label map globally
label_map = {0: "negative", 1: "positive"}

if __name__ == "__main__":
    interface.launch()