File size: 2,840 Bytes
de5d292
 
109a51e
91f07bb
de5d292
6583354
 
 
de5d292
03f073b
de5d292
3d99e17
b3c9904
109a51e
b3c9904
de5d292
 
6583354
0f5dc43
 
03f073b
6583354
2da57d4
 
03f073b
 
0f5dc43
 
03f073b
 
 
0f5dc43
 
 
 
 
 
787cf57
0b4cb0b
109a51e
105f589
2da57d4
0f5dc43
 
 
 
 
de5d292
 
03f073b
de5d292
 
 
 
6b58923
de5d292
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
from transformers import DebertaV2Tokenizer

st.set_page_config(page_title="Automated Question Answering System")
st.title("Automated Question Answering System")
st.subheader("Try")

@st.cache_resource(show_spinner=True)
def question_model():
    model_name = "kxx-kkk/FYP_deberta-v3-base-squad2_mrqa"
    # tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForQuestionAnswering.from_pretrained(model_name)
    question_answerer = pipeline("question-answering", model=model)
    return question_answerer

st.markdown("<h2 style='text-align: center; color:grey;'>Question Answering on Academic Essays</h2>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: left; color:#F63366; font-size:18px;'><b>What is extractive question answering about?<b></h3>", unsafe_allow_html=True)
st.write("Extractive question answering is a Natural Language Processing task where text is provided for a model so that the model can refer to it and make predictions about where the answer to a question is.")
# st.markdown('___')

tab1, tab2 = st.tabs(["Input text", "Upload File"])

with tab1:    
    sample_question = "What is NLP?"
    with open("sample.txt", "r") as text_file:
        sample_text = text_file.read()

    context = st.text_area("Use the example below / input your essay in English (10,000 characters max)", value=sample_text, max_chars=10000, height=330)
    question = st.text_input(label="Use the example question below / enter your own question", value=sample_question)
    button = st.button("Get answer")
    if button:
        with st.spinner(text="Loading question model..."):
            question_answerer = question_model()
        with st.spinner(text="Getting answer..."):
            answer = question_answerer(context=context, question=question)
            answer = answer["answer"]
            container = st.container(border=True)
            container.write("<h5><b>Answer:</b></h5>" + answer, unsafe_allow_html=True)
                        
with tab2:
    uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
    if uploaded_file is not None:
        raw_text = str(uploaded_file.read(),"utf-8")
        context = st.text_area("", value=raw_text, height=330)
        question = st.text_input(label="Enter your question", value=sample_question)
        button = st.button("Get answer")
        if button:
            with st.spinner(text="Loading question model..."):
                question_answerer = question_model()
            with st.spinner(text="Getting answer..."):
                answer = question_answerer(context=context, question=question)
                answer = answer["answer"]
                st.success(answer)