File size: 4,148 Bytes
de5d292
 
109a51e
de5d292
7af941b
569f8f6
de5d292
569f8f6
 
 
 
 
7af941b
 
03f073b
de5d292
6f2256e
7dab359
63163f7
109a51e
63163f7
de5d292
 
4feffcd
3361ae0
 
9f96f81
 
 
e96a8ac
9f96f81
 
 
e0567f7
3361ae0
6f2256e
2da57d4
 
7dab359
6f2256e
7af941b
 
03f073b
0f5dc43
 
03f073b
ddc7505
 
 
080ccca
ddc7505
 
9f6c9c3
ddc7505
6f2256e
ddc7505
 
7b1054f
ddc7505
 
 
 
7af941b
3361ae0
9f6c9c3
0042198
 
e0567f7
 
6f2256e
7dab359
6f2256e
2da57d4
7af941b
7dab359
7af941b
 
0f5dc43
 
9ccf1c4
e0567f7
7af941b
 
9ccf1c4
baaec0e
0042198
9ccf1c4
e0567f7
 
569f8f6
 
de5d292
7dab359
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForQuestionAnswering, AutoTokenizer


st.set_page_config(page_title="Automated Question Answering System")    # set page title

# heading 
st.markdown("<h2 style='text-align: center;'>Question Answering on Academic Essays</h2>", unsafe_allow_html=True)   
# description
st.markdown("<h3 style='text-align: left; color:#F63366; font-size:18px;'><b>What is extractive question answering about?<b></h3>", unsafe_allow_html=True)     
st.write("Extractive question answering is a Natural Language Processing task where text is provided for a model so that the model can refer to it and make predictions about where the answer to a question is.")

# store the model in cache resources to enhance efficiency (ref: https://docs.streamlit.io/library/advanced-features/caching)
@st.cache_resource(show_spinner=True)
def question_model():
    # call my model for question answering
    model_name = "kxx-kkk/FYP_deberta-v3-base-squad2_mrqa"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForQuestionAnswering.from_pretrained(model_name)
    question_answerer = pipeline("question-answering", model=model, tokenizer=tokenizer)
    return question_answerer

# get the answer by passing the context & question to the model
def question_answering(context, question):
    with st.spinner(text="Loading question model..."):
        question_answerer = question_model()
    with st.spinner(text="Getting answer..."):
        answer = question_answerer(context=context, question=question)
        answer_score = str(answer["score"])
        answer = answer["answer"]
        # display the result in container
        container = st.container(border=True)
        container.write("<h5><b>Answer:</b></h5>"+answer+"<p><small>(F1 score: "+answer_score+")</small></p><br>", unsafe_allow_html=True)

# choose the source with different tabs
tab1, tab2 = st.tabs(["Input text", "Upload File"])

'''----- input text -----'''
# if type the text as input
with tab1:  
    # set the example  
    sample_question = "What is NLP?"
    with open("sample.txt", "r") as text_file:
        sample_text = text_file.read()

    # Get the initial values of context and question
    context = st.session_state.get("contextInput", "")
    question = st.session_state.get("questionInput", "")

    # Button to try the example
    example = st.button("Try example")

    # Update the values if the "Try example" button is clicked
    if example:
        context = sample_text
        question = sample_question

    # Display the text area and text input with the updated or default values
    context = st.text_area("Enter the essay below:", value=context, key="contextInput", height=330)
    question = st.text_input(label="Enter the question: ", value=question, key="questionInput")
    
    # perform question answering when "get answer" button clicked
    button = st.button("Get answer", key="textInput")
    if button:
        if context=="" or question=="":
            st.error ("Please enter BOTH the context and the question", icon="🚨")
        else:
            question_answering(context, question)

'''----- upload file -----'''
# if upload file as input  
with tab2:
    # provide upload place
    uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])

    # transfer file to context and allow ask question, then perform question answering 
    if uploaded_file is not None:
        raw_text = str(uploaded_file.read(),"utf-8")
        context = st.text_area("Your essay context: ", value=raw_text, height=330)
        question = st.text_input(label="Enter your question", value="Enter question here")

        # perform question answering when "get answer" button clicked
        button2 = st.button("Get answer", key="fileInput")
        if button2:
            if context=="" or question=="":
                st.error ("Please enter BOTH the context and the question", icon="🚨")
            else:
                question_answering(context, question)

st.markdown("<br><br><br><br><br>", unsafe_allow_html=True)