File size: 3,964 Bytes
de5d292
 
109a51e
de5d292
7af941b
569f8f6
de5d292
569f8f6
 
 
 
 
7af941b
 
03f073b
de5d292
6f2256e
3d99e17
63163f7
109a51e
63163f7
de5d292
 
6f2256e
2da57d4
 
6f2256e
7af941b
 
03f073b
0f5dc43
 
03f073b
ddc7505
 
 
080ccca
ddc7505
 
9f6c9c3
ddc7505
6f2256e
ddc7505
 
7b1054f
ddc7505
 
 
 
7af941b
0f5dc43
9f6c9c3
0f5dc43
 
 
 
787cf57
569f8f6
0b4cb0b
569f8f6
6f2256e
7af941b
6f2256e
2da57d4
7af941b
0f5dc43
7af941b
 
0f5dc43
 
 
 
7af941b
 
de5d292
 
03f073b
de5d292
 
 
 
569f8f6
 
 
 
 
de5d292
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForQuestionAnswering, AutoTokenizer


st.set_page_config(page_title="Automated Question Answering System")    # set page title

# heading 
st.markdown("<h2 style='text-align: center;'>Question Answering on Academic Essays</h2>", unsafe_allow_html=True)   
# description
st.markdown("<h3 style='text-align: left; color:#F63366; font-size:18px;'><b>What is extractive question answering about?<b></h3>", unsafe_allow_html=True)     
st.write("Extractive question answering is a Natural Language Processing task where text is provided for a model so that the model can refer to it and make predictions about where the answer to a question is.")

# store the model in cache resources to enhance efficiency (ref: https://docs.streamlit.io/library/advanced-features/caching)
@st.cache_resource(show_spinner=True)
def question_model():
    # call my model for question answering
    model_name = "kxx-kkk/FYP_deberta-v3-base-squad2_mrqa"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForQuestionAnswering.from_pretrained(model_name)
    question_answerer = pipeline("question-answering", model=model, tokenizer=tokenizer)
    return question_answerer

# choose the source with different tabs
tab1, tab2 = st.tabs(["Input text", "Upload File"])

# if type the text as input
with tab1:  
    # set the example  
    sample_question = "What is NLP?"
    with open("sample.txt", "r") as text_file:
        sample_text = text_file.read()

    # Get the initial values of context and question
    context = st.session_state.get("contextInput", "")
    question = st.session_state.get("questionInput", "")

    # Button to try the example
    example = st.button("Try example")

    # Update the values if the "Try example" button is clicked
    if example:
        context = sample_text
        question = sample_question

    # Display the text area and text input with the updated or default values
    context = st.text_area("Enter the essay below:", value=context, key="contextInput", height=330)
    question = st.text_input(label="Enter the question: ", value=question, key="questionInput")
    
    # perform question answering when "get answer" button clicked
    button = st.button("Get answer")
    if button:
        with st.spinner(text="Loading question model..."):
            question_answerer = question_model()
        with st.spinner(text="Getting answer..."):
            answer = question_answerer(context=context, question=question)
            answer = answer["answer"]
            # display the result in container
            container = st.container(border=True)
            container.write("<h5><b>Answer:</b></h5>" + answer + "<br>", unsafe_allow_html=True)


# if upload file as input  
with tab2:
    # provide upload place
    uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])

    # transfer file to context and allow ask question, then perform question answering 
    if uploaded_file is not None:
        raw_text = str(uploaded_file.read(),"utf-8")
        context = st.text_area("", value=raw_text, height=330)
        question = st.text_input(label="Enter your question", value=sample_question)

        # perform question answering when "get answer" button clicked
        button = st.button("Get answer")
        if button:
            with st.spinner(text="Loading question model..."):
                question_answerer = question_model()
            with st.spinner(text="Getting answer..."):
                answer = question_answerer(context=context, question=question)
                answer = answer["answer"]
                # display the result in container
                container = st.container(border=True)
                container.write("<h5><b>Answer:</b></h5>" + answer + "<br>", unsafe_allow_html=True)

st.markdown("<br><br><br><br><br>", unsafe_allow_html=True)