File size: 1,574 Bytes
5ca3a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# global alignment optimization wrapper function
# --------------------------------------------------------
from enum import Enum

from .optimizer import PointCloudOptimizer
from .modular_optimizer import ModularPointCloudOptimizer
from .pair_viewer import PairViewer
from mini_dust3r.inference import Dust3rResult
from typing import Literal


class GlobalAlignerMode(Enum):
    PointCloudOptimizer = "PointCloudOptimizer"
    ModularPointCloudOptimizer = "ModularPointCloudOptimizer"
    PairViewer = "PairViewer"


def global_aligner(
    dust3r_output: Dust3rResult,
    device: Literal["cpu", "cuda", "mps"],
    mode: GlobalAlignerMode = GlobalAlignerMode.PointCloudOptimizer,
    **optim_kw,
):
    # extract all inputs
    view1, view2, pred1, pred2 = [
        dust3r_output[k] for k in "view1 view2 pred1 pred2".split()
    ]
    # build the optimizer
    if mode == GlobalAlignerMode.PointCloudOptimizer:
        net = PointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(device)
    elif mode == GlobalAlignerMode.ModularPointCloudOptimizer:
        net = ModularPointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(
            device
        )
    elif mode == GlobalAlignerMode.PairViewer:
        net = PairViewer(view1, view2, pred1, pred2, **optim_kw).to(device)
    else:
        raise NotImplementedError(f"Unknown mode {mode}")

    return net