File size: 1,165 Bytes
f1b497b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df65a8
f1b497b
 
 
 
 
 
 
8ae7ec8
 
f1b497b
 
 
 
 
 
 
 
7c42c18
f1b497b
 
 
510da2d
f1b497b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from huggingface_hub import hf_hub_download
import re
from PIL import Image

import gradio as gr

from transformers import NougatProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import torch

model_checkpoint = "facebook/nougat-base"
processor = NougatProcessor.from_pretrained(model_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)

# Use GPU if possible
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# prepare PDF image for the model
def predict(img):
    pixel_values = processor(img, return_tensors="pt").pixel_values

    outputs = model.generate(
            pixel_values.to(device),
            min_length=1,
            max_new_tokens=30,
            bad_words_ids=[[processor.tokenizer.unk_token_id]],
    )

    sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    sequence = processor.post_process_generation(sequence, fix_markdown=False)
    return sequence

image = gr.Image(height=192, width=192)
text = ["text"]
examples = ['page_10.jpg']

intf = gr.Interface(fn=predict, inputs=image, outputs=text, examples=examples)
intf.launch(inline=False)