File size: 5,275 Bytes
329d383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
import requests as r
import regex as re
from dateutil import parser
import logging
import multiprocessing
from datetime import date


def get_time_delta(dt):
    BASE_DATE = date(2024, 1, 1)
    time_delta = dt.date() - BASE_DATE
    return time_delta.days


def text_clean(desc):
    """
    Cleans the text by removing special chars.
    :param desc: string containing description
    :return: str, cleaned description.
    """
    desc = desc.replace("&lt;", "<")
    desc = desc.replace("&gt;", ">")
    desc = re.sub("<.*?>", "", desc)
    desc = desc.replace("#39;", "'")
    desc = desc.replace('&quot;', '"')
    desc = desc.replace('&nbsp;', ' ')
    desc = desc.replace('#32;', ' ')
    return desc


def rss_parser(i):
    """
    Returns a data frame of parsed news item.
    :param i: single news item in RSS feed.
    :return: Data frame of parsed news item.
    """
    b1 = BeautifulSoup(str(i), "xml")
    title = "" if b1.find("title") is None else b1.find("title").get_text()
    title = text_clean(title)
    url = "" if b1.find("link") is None else b1.find("link").get_text()
    date = "Sat, 12 Aug 2000 13:39:15 +05:30" if ((b1.find("pubDate") == "") or (b1.find("pubDate") is None)) else b1.find("pubDate").get_text()
    if url.find("businesstoday.in") >= 0:
        date = date.replace("GMT", "+0530")
    date1 = parser.parse(date)
    return pd.DataFrame({"title": title,
                         "url": url,
                         "parsed_date": date1}, index=[0])


def src_parse(rss):
    """
    Returns the root domain name (eg. livemint.com is extracted from www.livemint.com
    :param rss: RSS URL
    :return: str, string containing the source name
    """
    if rss.find('ndtv') >= 0:
        rss = 'ndtv.com'
    if rss.find('bbc') >= 0:
        rss = 'bbc.com'
    if rss.find('huffpost.') >= 0:
        rss = 'huffpost.com'
    if rss.find('nytimes.') >= 0:
        rss = 'nytimes.com'
    
    rss = rss.replace("https://www.", "")
    rss = rss.split("/")
    return rss[0]


def news_agg(rss):
    """
    Returns feeds from each 'rss' URL.
    :param rss: RSS URL.
    :return: Data frame of processed articles.
    """
    try:
        rss_df = pd.DataFrame()
        headers = {
                    'authority': 'www.google.com',
                    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
                    'accept-language': 'en-US,en;q=0.9',
                    'cache-control': 'max-age=0',
                    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36'
        }

        timeout = 5
        
        resp = r.get(rss, timeout=timeout, headers=headers)
        logging.info(f'{rss}: {resp.status_code}')
        b = BeautifulSoup(resp.content, "xml")
        items = b.find_all("item")
        for i in items:
            rss_df = pd.concat([rss_df, rss_parser(i)], axis=0)
        rss_df.reset_index(drop=True, inplace=True)

        rss_df["src"] = src_parse(rss)
        rss_df['news_age'] = rss_df["parsed_date"].apply(get_time_delta)
        rss_df["parsed_date"] = rss_df["parsed_date"].map(lambda x: x.date).astype("str")
    except Exception as e:
        logging.warning(f"Couldn't process {rss}\nSTATUS CODE: {resp.status_code}\nREASON: {e}")
        pass
    return rss_df


# List of RSS feeds
rss = ['https://chaski.huffpost.com/us/auto/vertical/world-news',
       'https://feeds.bbci.co.uk/news/world/rss.xml',
       'https://rss.nytimes.com/services/xml/rss/nyt/World.xml',
       'https://www.economictimes.indiatimes.com/rssfeedstopstories.cms',
       'https://www.thehindu.com/news/feeder/default.rss',
       'https://www.businesstoday.in/rssfeeds/?id=225346',
       'https://feeds.feedburner.com/ndtvnews-latest',
       'https://www.hindustantimes.com/feeds/rss/world-news/rssfeed.xml',
       'https://www.indiatoday.in/rss/1206578',
       'https://www.timesofindia.indiatimes.com/rssfeedmostrecent.cms']


def get_news_rss(url):
    final_df = news_agg(url)
    final_df.reset_index(drop=True, inplace=True)
    final_df.drop_duplicates(subset='url', inplace=True)
    final_df = final_df.loc[(final_df["title"] != ""), :].copy()
    return final_df


def get_news_multi_process(urls):
    '''
    Get the data shape by parallely calculating lenght of each chunk and 
    aggregating them to get lenght of complete training dataset
    '''
    pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
    
    results = []
    for url in urls:
        f = pool.apply_async(get_news_rss, [url]) # asynchronously applying function to chunk. Each worker parallely begins to work on the job
        results.append(f) # appending result to results
        
    final_df = pd.DataFrame()
    for f in results:
        final_df = pd.concat([final_df, f.get(timeout=120)], axis=0) # getting output of each parallel job
    
    final_df.reset_index(drop=True, inplace=True)
    logging.info(final_df['src'].unique())
    pool.close()
    pool.join()
    return final_df


def get_news():
   return get_news_multi_process(rss)