File size: 10,525 Bytes
078c1e1
 
 
 
 
 
 
 
 
a8dea8a
078c1e1
 
a45dbd7
078c1e1
706d67d
078c1e1
 
 
 
 
a8dea8a
c01bc7e
078c1e1
a8dea8a
078c1e1
 
 
 
 
 
 
c01bc7e
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7094c14
078c1e1
 
 
 
 
 
 
 
 
 
 
 
7094c14
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c01bc7e
078c1e1
 
 
c01bc7e
078c1e1
 
 
 
 
 
 
 
c01bc7e
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8dea8a
 
078c1e1
4637556
c01bc7e
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7094c14
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
4637556
078c1e1
 
6b94336
f496f2e
3a8bf3a
078c1e1
 
 
 
 
 
 
 
 
 
 
 
3a8bf3a
 
 
 
078c1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c01bc7e
a45dbd7
4637556
078c1e1
 
 
4a0eb4a
078c1e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
import pandas as pd
from dateutil import parser
from flask import Flask, render_template
from flask_cors import cross_origin, CORS
from db_operations.db_operations import DBOperations
import logging
import traceback 
import redis
import uuid
from datetime import datetime
from functools import lru_cache
import gc
from word_cloud import get_frequent_words_html
from config import NEWS_RETENTION_SECONDS, UK_EDITION_URL


app = Flask(__name__)
CORS(app)
redis_client = redis.Redis(host='localhost', port=6379, decode_responses=True)
logging.basicConfig(format='%(asctime)s %(message)s')
logging.warning(f'Is Redis available?: {redis_client.ping()}') 
db = DBOperations()
session_id = None


REFRESH_FREQ = 300 # 300 secs = 5 mins

def is_db_fetch_reqd():
    try:
        env_news_time = redis_client.get('NEWSFETCHTIME')
        logging.warning(f'[session_id: {session_id}] fetch_time_env_var: {env_news_time}')
        fetch_flag = 1
        if env_news_time is None:
            redis_client.set("NEWSFETCHTIME", str(datetime.now()))
            fetch_flag = 1
    
        if env_news_time is not None:
            fetch_time_lapse_seconds = (datetime.now() - datetime.strptime(env_news_time, '%Y-%m-%d %H:%M:%S.%f')).seconds
            if fetch_time_lapse_seconds <= REFRESH_FREQ: 
                fetch_flag = 0 
            else:
                redis_client.set("NEWSFETCHTIME", str(datetime.now()))
                fetch_flag = 1
    except Exception as e:
        print(e)
        fetch_flag = 1
    return fetch_flag


def correct_date(x):
    if (not isinstance(x, str)) or (str(x).find(":") == -1):
        logging.error(f'[session_id: {session_id}] correct_date() error: {x} is not the right date format')
        return "2020-11-07 00:36:44+05:30"
    return x

def date_time_parser(dt):
    """
    Computes the minutes elapsed since published time.
    :param dt: date
    :return: int, minutes elapsed.
    """
    try:
        return int(np.round((dt.now(dt.tz) - dt).total_seconds() / 60, 0))
    except:
        logging.error(f'[session_id: {session_id}] date_time_parser() error: {dt} is not the right date format')
        return 100000


def elapsed_time_str(mins):
    """
    Return the time elapsed string from minutes passed as an argument.
    :param mins: int, minutes elapsed.
    :return: str, time elapsed string
    """
    try:
        time_str = ''
        hours = int(mins / 60)
        days = np.round(mins / (60 * 24), 1)
        remaining_mins = int(mins - (hours * 60))
        if days >= 1:
            time_str = f'{str(days)} days ago'
            if days == 1:
                time_str = 'a day ago'
        elif (days < 1) & (hours < 24) & (mins >= 60):
            time_str = f'{str(hours)} hours and {str(remaining_mins)} mins ago'
            if (hours == 1) & (remaining_mins > 1):
                time_str = f'an hour and {str(remaining_mins)} mins ago'
            if (hours == 1) & (remaining_mins == 1):
                time_str = f'an hour and a min ago'
            if (hours > 1) & (remaining_mins == 1):
                time_str = f'{str(hours)} hours and a min ago'
            if (hours > 1) & (remaining_mins == 0):
                time_str = f'{str(hours)} hours ago'
            if ((mins / 60) == 1) & (remaining_mins == 0):
                time_str = 'an hour ago'
        elif (days < 1) & (hours < 24) & (mins == 0):
            time_str = 'Just in'
        else:
            time_str = f'{str(mins)} minutes ago'
            if mins == 1:
                time_str = 'a minute ago'
        return time_str
    except:
        return "-"



def fetch_from_db(fetch_flag):
    try:
        logging.warning(f'[session_id: {session_id}] fetch_flag: {fetch_flag}')
        if fetch_flag == 1:
            final_df = db.read_news_from_db()
            freq_tokens = get_frequent_words_html(final_df)
            logging.warning(f'[session_id: {session_id}] Fetched From DB')

            final_df['_id'] = final_df['_id'].astype('str')
            
            redis_client.set("NEWSDF", final_df.to_json())
            redis_client.set("NEWSWORDCLOUD", freq_tokens)
        else:
            final_df = pd.read_json(redis_client.get("NEWSDF"))
            freq_tokens = redis_client.get("NEWSWORDCLOUD")
            logging.warning(f'[session_id: {session_id}] Fetched From Cache')
            
    except Exception as e:
        print(e)
        final_df = []
        freq_tokens = ""
        raise
    return final_df, freq_tokens


@app.route("/")
@cross_origin()
def index():
    """
    Entry point
    """
    try:
        global session_id
        session_id = uuid.uuid4().hex
        src_str = ''
        status_code = 200
        logging.warning(f'[session_id: {session_id}] Entering the application')
        final_df, freq_tokens = fetch_from_db(is_db_fetch_reqd())
        if len(final_df) > 1:
            
            final_df["parsed_date"] = [correct_date(date_) for date_ in final_df['parsed_date']]
            final_df["parsed_date"] = [parser.parse(date_) for date_ in final_df['parsed_date']]
            final_df["elapsed_time"] =[date_time_parser(date_) for date_ in final_df['parsed_date']]
            final_df = final_df.loc[final_df["elapsed_time"] <= NEWS_RETENTION_SECONDS, :].copy()
            final_df["elapsed_time_str"] = final_df["elapsed_time"].apply(elapsed_time_str)
            final_df.sort_values(by="elapsed_time", inplace=True)
            src_str = ", ".join(sorted([*final_df['src'].unique()]))
            final_df['src_time'] = final_df['src'] + ("&nbsp;" * 5) + final_df["elapsed_time_str"]
            final_df.drop(columns=['_id', 'parsed_date', 'src', 'elapsed_time', 'elapsed_time_str'], inplace=True)
            final_df.drop_duplicates(subset='description', inplace=True)
            final_df = final_df.loc[(final_df["title"] != ""), :].copy()
        else:
            final_df = pd.DataFrame({'title': '', 'url': '',
                                     'description': '', 'src_time': ''}, index=[0])
        
    except Exception as e:
        final_df = pd.DataFrame({'title': '', 'url': '',
                                 'description': '', 'src_time': ''}, index=[0])
        logging.error(f'[session_id: {session_id}] {traceback.print_exc()}')

    result_str = f'''
                    <div class="box" id="main">
                    <form> 
                    
                    <div class="banner">
                    <img src="../static/favicon_new.png" class="logo-img" alt="KSV Muralidhar" />
                    <h1 style="display:inline-block; vertical-align: middle;">Latest News</h1>
                    </div>
                 '''
    
    if len(final_df) <= 1:
        result_str += f'''<div><p class="unavailable">This app is temporarily unavailable</p></div>'''
        status_code = 500
    else:
        last_update_utc = datetime.strptime(redis_client.get('NEWSFETCHTIME'), '%Y-%m-%d %H:%M:%S.%f')
        last_update_mins = int(np.ceil((datetime.now() - last_update_utc).seconds / 60))
        last_update_str = f'Updated {last_update_mins} {"minutes" if last_update_mins > 1 else "minute"} ago'
        result_str += f'<p class="srctxt">News aggregated from <b>{src_str}</b>.<br><br>{last_update_str}&nbsp;&nbsp;&nbsp;&nbsp;<a href="{UK_EDITION_URL}"><b>Switch to UK edition</b></a></p>'

        result_str += '''
    	<div class="input-container">
		<input type="text" class="keyword-input" id="keywordInput" placeholder="Search" oninput="filterContent(true)">
		<div class="clear-btn" id="clearBtn" onclick="clearFilter()">&times;</div>
		</div>
      '''

        result_str += f"{freq_tokens} "
        result_str += '<div class="show-more-word-cloud" onclick=word_cloud_display()><p class="three-dots">...</p></div>'

        result_str += '''<div style="padding-bottom: 10px; font-size: 12px; font-family: Arial, Helvetica, sans-serif;">
                         News categories and similar news are AI-generated</div>
                         <div style="padding-bottom: 10px; font-size: 12px; font-family: Arial, Helvetica, sans-serif; font-weight: bold;">
                         {len(final_df)} news articles available</div>
                         '''

        
        for n, i in final_df.iterrows():  # iterating through the search results
            href = i["url"]
            category = i["category"]
            description = i["description"]
            url_txt = i["title"]
            src_time = i["src_time"]
            sim_news = i['similar_news']
            result_str += f'''<div class="news-item"><div style="padding-top: 7px;">
                              <a href="{href}" target="_blank" class="article-category">{category}
                              </a>
                              </div>
                              <div>
                              <a href="{href}" target="_blank" class="headline">{url_txt}
                              </a>
                              </div>
                              <div>
                              <a href="{href}" target="_blank" class="description">
                              {description}
                              </a>
                              </div>
                              <div>
                              <a href="{href}" target="_blank" class="time">
                              {src_time}
                               </a>
                               </div>


                                <div class="container">
                               <div class="content" style="display: none;">
                               {sim_news}
                               </div>
                               <div class="show-similar-button-container">
                               <button type="button" class="show-more">Show similar news</button>
								<button type="button" class="show-less">Hide similar news</button>
								</div>
                                </div>


                               
                               <div>
                               <p></p>
                               </div></div>
                               '''

    result_str += '</form></div>'
    logging.warning(f'[session_id: {session_id}] Successfully rendered template')
    gc.collect()
    return render_template("index.html", body=result_str), status_code


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, workers=3, threads=3) # workers=(2*ncores) + 1, threads= (2 to 4*ncores) + 1