Spaces:
Sleeping
Sleeping
File size: 4,795 Bytes
503acc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import argparse
import os
import random
import io
from PIL import Image
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from typing import List
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.responses import RedirectResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from PIL import Image
import io
import uvicorn
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4_eval.yaml',
help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
'''
print('Initializing Chat')
cfg = Config(parse_args())
model_config = cfg.model_cfg
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:0')
vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor)
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Replace "*" with your frontend domain
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
class Item(BaseModel):
gr_img: UploadFile = File(..., description="Image file")
text_input: str = None
chat_state = CONV_VISION.copy()
img_list = []
chatbot = []
@app.get("/")
async def root():
return RedirectResponse(url="/docs")
@app.post("/upload_img/")
async def upload_img(
file: UploadFile = File(...),
):
pil_image = Image.open(io.BytesIO(await file.read()))
chat.upload_img(pil_image, chat_state, img_list)
return {"message": "image uploaded successfully."}
@app.post("/process/")
async def process_item(prompts: List[str] = Form(...)):
if not img_list: # Check if img_list is empty or None
raise HTTPException(status_code=400, detail="No images uploaded.")
global chatbot
responses = []
for prompt in prompts:
# Process each prompt individually
chat.ask(prompt, chat_state)
chatbot.append([prompt, None])
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=1, max_length=2000)[0]
chatbot[-1][1] = llm_message
responses.append({
"prompt": prompt,
"response": llm_message
})
return responses
@app.post("/reset/")
async def reset(
):
global chat_state, img_list, chatbot # Use global keyword to reassign
img_list = []
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
if chatbot is not None:
chatbot = []
if __name__ == "__main__":
# Run the FastAPI app with Uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=7860) |