Spaces:
Sleeping
Sleeping
File size: 7,939 Bytes
fa54254 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import cv2
import pytesseract
from paddleocr import PaddleOCR
from scipy import ndimage
import supervision as sv
import numpy as np
import math
from src.categories import CATEGORIES as categories
symbol_map = {
"β€": 'Straightness',
"β₯": 'Flatness',
"β": 'Cylindricity',
"β": 'Circularity',
"β―": 'Symmetry',
"β": 'Position',
"β": 'Concentricity',
"β": 'Perpendicularity',
"β₯": 'Parallelism',
"β ": 'Angularity',
"β": 'Profile of a surface',
"β": 'Profile of a line',
"β°": 'Total run-out',
"β": 'Circular run-out'
}
feature_symbol_map = {
'β»': '(Free state)',
'β': '(LMC)',
'β': '(MMC)',
'β
': '(Projected tolerance zone)',
'β': '(RFS)',
'β': '(Tangent plane)',
'β': '(Unequal bilateral)'
}
class DatumOCR:
def __init__(self):
self.ocr = PaddleOCR(use_angle_cls=True, lang='en', show_log=False, use_gpu=False)
def crop_img(self, img: np.array, box: any, rotation: int = 0):
crop = sv.crop_image(image=img , xyxy=box.xyxy[0].detach().cpu().numpy())
crop = ndimage.rotate(crop, rotation)
return crop
def crop_by_id(self, img : np.array, id: int, boxes: any, rotation: int = 0):
boxes_of_interest = [self.crop_img(img, box, rotation) for box in boxes if box.cls.item() == id]
return boxes_of_interest
def split_contures(self, img : np.array):
# Preprocessing
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Find contours
cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = []
# Filter for rectangles and squares
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
area = cv2.contourArea(c)
if len(approx) == 4 and area > 200:
x, y, w, h = cv2.boundingRect(c)
contours.append((x, y, w, h))
#cv2.drawContours(image, [approx], -1, (0, 255, 0), 3)
contours.sort(key=lambda rect: rect[0])
return contours
def clense_lines(self, img: np.array, linesize : int = 10):
""" Input the full label of gd&t as img
i.e.
_______________
| o | 0.2 | A |
'-------------'
"""
clensed = img.copy()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Remove horizontal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (linesize,1))
remove_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(remove_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(clensed, [c], -1, (255,255,255), 2)
# Remove vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,linesize))
remove_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(remove_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(clensed, [c], -1, (255,255,255), 2)
return clensed
def read_contures(self, rect, clensed : np.array, math_recognition : bool = True):
"""
Input:
grouped_rectangles: list of rect coordinates with x,y,w,h
clensed : preprocessed image to read from
"""
pix = []
first = math_recognition # as if no math recognition it should always use paddle
text = []
#reverse = lines[::-1].copy()
for i, rect in enumerate(rect):
x, y, w, h = rect
roi = clensed[y:y+h, x:x+w]
if first:
custom_config = r'--oem 3 -l eng_gdt --psm 6'
first = False
gdt = self.ocr_gdt(roi, custom_config)
else:
if math_recognition:
custom_config = r'--oem 3 -l eng_math --psm 6'
gdt = self.ocr_gdt(roi, custom_config)
else:
gdt = self.ocr_paddle(roi)
text.append(gdt)
pix.append(roi)
return text, pix
def ocr_gdt(self, img: np.array, custom_config: str, debug : bool = False):
gdt = []
text_ex = pytesseract.image_to_data(img, config=custom_config, output_type='data.frame')
text_ex = text_ex[text_ex.conf != -1]
if len(text_ex['text']) == 1:
item = text_ex['text'].item()
gdt.append(str(item))
if item in symbol_map:
gdt.append(symbol_map[item])
elif item in feature_symbol_map:
gdt.append(feature_symbol_map[item])
if debug:
print('gdt - ' + item)
else:
gdt.append('not readable')
return gdt
def ocr_paddle(self, roi, debug: bool = False):
gdt = []
ocr_res = self.ocr.ocr(roi, cls=False, det=False, rec=True)
for idx in range(len(ocr_res)):
res = ocr_res[idx]
if res is not None:
for line in res:
gdt.append(str(line[0]))
if debug:
print('txt - ' + str(line[1][0]))
return gdt
def read_rois(self, sv_image: np.array, classes_to_detect: list[int], boxes: any, rotation: int):
"""
Split up the result regions and try to read them -> result is Returned as an 2D array of Strings and an array of images as np.array
sv_image = the full image to analize
class_to_detect = 4 (GD&T) or 6 (surface)
boxes = resulting boxes from YOLO (mostly ~ results[0].boxes)
rotation = angle the image needs to be rotated
"""
res = []
for class_to_detect in classes_to_detect:
if class_to_detect == 4:
remove_table_structure = True
else:
remove_table_structure = False
boi = self.crop_by_id(sv_image, class_to_detect, boxes, rotation)
# clensed = clense_lines(sv_image)
#sv.plot_image(image=clensed)
for b in boi:
if min(b.shape) == 0:
continue
lines = self.read_roi(b, remove_table_structure, rotation)
res.append(f"{categories[class_to_detect]} : {lines}")
return res
def read_roi(self, b: np.array, remove_table_structure: bool , rotation: int):
# turn 90 degree if wrong aligned
h, w, _ = b.shape
threshold = 1.1
if h > w*threshold:
rot = -90
if rotation == 180:
rot = rot + 180
b = ndimage.rotate(b, rot)
if(remove_table_structure):
rect = self.split_contures(b)
linesize = math.ceil(max(b.shape)*0.10)-1
clensed = self.clense_lines(b, linesize)
else :
w, h, _ = b.shape
rect = [(0,0, h, w)]
clensed = b
#preprocessing
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
# Apply the sharpening kernel
sharpened_image = cv2.filter2D(clensed , -1, kernel)
# thresholding
_, thresh_img = cv2.threshold(sharpened_image, 128, 255, 0, cv2.THRESH_BINARY)
#[print(c) for c in rect]
lines, pix = self.read_contures(rect, thresh_img, remove_table_structure)
return lines #, pix, thresh_img |