File size: 11,021 Bytes
98322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f95316
 
 
 
98322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddaa35b
98322fb
 
 
13ed5cd
 
98322fb
 
 
 
 
 
ddaa35b
98322fb
 
9fa5675
98322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ccebc
 
 
98322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d266f9a
 
4953204
4a0faa2
98322fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ed5cd
 
98322fb
 
 
10a2381
98322fb
 
 
 
 
2939dde
98322fb
6fc70d1
 
98322fb
 
14a8f19
98322fb
6fc70d1
 
 
 
98322fb
 
4bf0d68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import sys
import pdb
import random
import numpy as np
from PIL import Image
import base64
from io import BytesIO

import torch
from torchvision import transforms
import torchvision.transforms.functional as TF
import gradio as gr

from src.model import make_1step_sched
from src.pix2pix_turbo import Pix2Pix_Turbo

model = Pix2Pix_Turbo("sketch_to_image_stochastic")

style_list = [
    {
        "name": "No Style",
        "prompt": "{prompt}",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
    },
]

styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Fantasy art"
MAX_SEED = np.iinfo(np.int32).max


def pil_image_to_data_uri(img, format='PNG'):
    buffered = BytesIO()
    img.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/{format.lower()};base64,{img_str}"


def run(image, prompt, prompt_template, style_name):
    print("sketch updated")
    if image is None:
        ones = Image.new("L", (512, 512), 255)
        temp_uri = pil_image_to_data_uri(ones)
        return ones, gr.update(link=temp_uri), gr.update(link=temp_uri)
    prompt = prompt_template.replace("{prompt}", prompt)
    image = image.convert("RGB")
    image_t = TF.to_tensor(image) > 0.5
    image_pil = TF.to_pil_image(image_t.to(torch.float32))
    with torch.no_grad():
        c_t = image_t.unsqueeze(0).cuda().float()
        torch.manual_seed(42)
        B,C,H,W = c_t.shape
        noise = torch.randn((1,4,H//8, W//8), device=c_t.device)
        output_image = model(c_t, prompt, deterministic=False, r=0.5, noise_map=noise)
    output_pil = TF.to_pil_image(output_image[0].cpu()*0.5+0.5)
    input_sketch_uri = pil_image_to_data_uri(Image.fromarray(255-np.array(image)))
    output_image_uri = pil_image_to_data_uri(output_pil)
    return output_pil, gr.update(link=input_sketch_uri), gr.update(link=output_image_uri)


def update_canvas(use_line, use_eraser):
    if use_eraser:
        _color = "#ffffff"
        brush_size = 20
    if use_line:
        _color = "#000000"
        brush_size = 4
    return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)


def upload_sketch(file):
    _img = Image.open(file.name)
    _img = _img.convert("L")
    return gr.update(value=_img, source="upload", interactive=True)


scripts = """
async () => {
    globalThis.theSketchDownloadFunction = () => {
        console.log("test")
        var link = document.createElement("a");
        dataUri = document.getElementById('download_sketch').href
        link.setAttribute("href", dataUri)
        link.setAttribute("download", "sketch.png")
        document.body.appendChild(link); // Required for Firefox
        link.click();
        document.body.removeChild(link); // Clean up
      
        // also call the output download function
        theOutputDownloadFunction();
      return false
    }

    globalThis.theOutputDownloadFunction = () => {
        console.log("test output download function")
        var link = document.createElement("a");
        dataUri = document.getElementById('download_output').href
        link.setAttribute("href", dataUri);
        link.setAttribute("download", "output.png");
        document.body.appendChild(link); // Required for Firefox
        link.click();
        document.body.removeChild(link); // Clean up
      return false
    }

    globalThis.UNDO_SKETCH_FUNCTION = () => {
        console.log("undo sketch function")
        var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)');
        // Create a new 'click' event
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        button_undo.dispatchEvent(event);
    }

    globalThis.DELETE_SKETCH_FUNCTION = () => {
        console.log("delete sketch function")
        var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)');
        // Create a new 'click' event
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        button_del.dispatchEvent(event);
    }

    globalThis.togglePencil = () => {
        el_pencil = document.getElementById('my-toggle-pencil');
        el_pencil.classList.toggle('clicked');
        // simulate a click on the gradio button
        btn_gradio = document.querySelector("#cb-line > label > input");
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        btn_gradio.dispatchEvent(event);
        if (el_pencil.classList.contains('clicked')) {
            document.getElementById('my-toggle-eraser').classList.remove('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "gray";
            document.getElementById('my-div-eraser').style.backgroundColor = "white";
        }
        else {
            document.getElementById('my-toggle-eraser').classList.add('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "white";
            document.getElementById('my-div-eraser').style.backgroundColor = "gray";
        }
        
    }

    globalThis.toggleEraser = () => {
        element = document.getElementById('my-toggle-eraser');
        element.classList.toggle('clicked');
        // simulate a click on the gradio button
        btn_gradio = document.querySelector("#cb-eraser > label > input");
        var event = new MouseEvent('click', {
            'view': window,
            'bubbles': true,
            'cancelable': true
        });
        btn_gradio.dispatchEvent(event);
        if (element.classList.contains('clicked')) {
            document.getElementById('my-toggle-pencil').classList.remove('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "white";
            document.getElementById('my-div-eraser').style.backgroundColor = "gray";
        }
        else {
            document.getElementById('my-toggle-pencil').classList.add('clicked');
            document.getElementById('my-div-pencil').style.backgroundColor = "gray";
            document.getElementById('my-div-eraser').style.backgroundColor = "white";
        }
    }
}
"""

with gr.Blocks(css="style.css") as demo:

 
    
    # these are hidden buttons that are used to trigger the canvas changes
    line = gr.Checkbox(label="line", value=False, elem_id="cb-line")
    eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser")
    with gr.Row(elem_id="main_row"):
        with gr.Column(elem_id="column_input"):
            gr.Markdown("## INPUT", elem_id="input_header")
            image = gr.Image(
                source="canvas", tool="color-sketch", type="pil", image_mode="L",
                invert_colors=True, shape=(512, 512), brush_radius=4, height=440, width=440,
                brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False)
            download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch")
            
            gr.HTML("""
            <div class="button-row">
                <div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div>
                <div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div>
                <div class="pad2"> <button id="my-button-undo" onclick="return UNDO_SKETCH_FUNCTION(this)"></button> </div>
                <div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div>
            </div>
            """)
            # gr.Markdown("## Prompt", elem_id="tools_header")
            prompt = gr.Textbox(label="Prompt", value="", show_label=True)
            with gr.Row():
                style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
                prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1)
       

        with gr.Column(elem_id="column_output"):
            gr.Markdown("## OUTPUT", elem_id="output_header")
            result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True)
            download_output = gr.Button("Download output", elem_id="download_output")

    
    eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image])
    line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image])

    demo.load(None,None,None,_js=scripts)
    inputs = [image, prompt, prompt_temp, style]
    outputs = [result, download_sketch, download_output]
    prompt.submit(fn=run, inputs=inputs, outputs=outputs)
    style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
        fn=run, inputs=inputs, outputs=outputs,)
    image.change(run, inputs=inputs, outputs=outputs,)

if __name__ == "__main__":
    demo.queue().launch(debug=True)