Spaces:
Sleeping
Sleeping
File size: 8,428 Bytes
98322fb f872b37 98322fb 6eb8bc3 98322fb de5fa74 98322fb 13ed5cd 5fadb62 98322fb ddaa35b 98322fb f872b37 98322fb 6eb8bc3 98322fb 2d27002 84aac8a b5da494 1e561c3 98322fb a3c3ebf 98322fb 2ec3d1b d266f9a 4953204 4a0faa2 98322fb fe2f0f2 1e561c3 98322fb 6eb8bc3 10a2381 98322fb 0a34a56 aa25097 7108ed7 1a90e0e 2939dde 98322fb 6fc70d1 98322fb fb8291f 1e561c3 ed65a98 1e561c3 98322fb 4bf0d68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import sys
import pdb
import random
import numpy as np
from PIL import Image
import base64
from io import BytesIO
import torch
from torchvision import transforms
import torchvision.transforms.functional as TF
import gradio as gr
from src.model import make_1step_sched
from src.pix2pix_turbo import Pix2Pix_Turbo
model = Pix2Pix_Turbo("sketch_to_image_stochastic")
ITEMS_NAMES = [ "π‘ Lamp","π Bag","ποΈ Sofa","πͺ Chair","ποΈ Car","ποΈ Motorbike","π Building"]
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_ITEM_NAME = "π‘ Lamp"
def pil_image_to_data_uri(img, format='PNG'):
buffered = BytesIO()
img.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/{format.lower()};base64,{img_str}"
def run(image, item_name):
print("sketch updated")
if image is None:
ones = Image.new("L", (512, 512), 255)
temp_uri = pil_image_to_data_uri(ones)
return ones, gr.update(link=temp_uri), gr.update(link=temp_uri)
prompt = item_name + " professional 3d model. octane render, highly detailed, volumetric, dramatic lighting"
image = image.convert("RGB")
image_t = TF.to_tensor(image) > 0.5
image_pil = TF.to_pil_image(image_t.to(torch.float32))
with torch.no_grad():
c_t = image_t.unsqueeze(0).cuda().float()
torch.manual_seed(42)
B,C,H,W = c_t.shape
noise = torch.randn((1,4,H//8, W//8), device=c_t.device)
output_image = model(c_t, prompt, deterministic=False, r=0.4, noise_map=noise)
output_pil = TF.to_pil_image(output_image[0].cpu()*0.5+0.5)
input_sketch_uri = pil_image_to_data_uri(Image.fromarray(255-np.array(image)))
output_image_uri = pil_image_to_data_uri(output_pil)
return output_pil, gr.update(link=input_sketch_uri), gr.update(link=output_image_uri)
def update_canvas(use_line, use_eraser):
if use_eraser:
_color = "#ffffff"
brush_size = 20
if use_line:
_color = "#000000"
brush_size = 4
return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)
def upload_sketch(file):
_img = Image.open(file.name)
_img = _img.convert("L")
return gr.update(value=_img, source="upload", interactive=True)
scripts = """
async () => {
globalThis.theSketchDownloadFunction = () => {
console.log("test")
var link = document.createElement("a");
dataUri = document.getElementById('download_sketch').href
link.setAttribute("href", dataUri)
link.setAttribute("download", "sketch.png")
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
// also call the output download function
theOutputDownloadFunction();
return false
}
globalThis.theOutputDownloadFunction = () => {
console.log("test output download function")
var link = document.createElement("a");
dataUri = document.getElementById('download_output').href
link.setAttribute("href", dataUri);
link.setAttribute("download", "output.png");
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
return false
}
globalThis.DELETE_SKETCH_FUNCTION = () => {
console.log("delete sketch function")
var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)');
// Create a new 'click' event
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
button_del.dispatchEvent(event);
}
globalThis.togglePencil = () => {
el_pencil = document.getElementById('my-toggle-pencil');
el_pencil.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-line > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (el_pencil.classList.contains('clicked')) {
document.getElementById('my-toggle-eraser').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
else {
document.getElementById('my-toggle-eraser').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
}
globalThis.toggleEraser = () => {
element = document.getElementById('my-toggle-eraser');
element.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-eraser > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (element.classList.contains('clicked')) {
document.getElementById('my-toggle-pencil').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
else {
document.getElementById('my-toggle-pencil').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
}
}
"""
with gr.Blocks(css="style.css") as demo:
# these are hidden buttons that are used to trigger the canvas changes
line = gr.Checkbox(label="line", value=False, elem_id="cb-line")
eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser")
with gr.Row(elem_id="main_row"):
with gr.Column(elem_id="column_input"):
image = gr.Image(
source="canvas", tool="color-sketch", type="pil", image_mode="L",
invert_colors=True, shape=(512, 512), brush_radius=4, height=440, width=440,
brush_color="#000000", interactive=True, show_download_button=False, elem_id="input_image", show_label=False)
download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch")
gr.HTML("""
<div class="button-row">
<div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div>
<div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div>
<div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div>
</div>
""")
with gr.Row():
item = gr.Dropdown(label="What do you want to design? π§βπ¨ ", choices=ITEMS_NAMES, value=DEFAULT_ITEM_NAME, scale=1)
with gr.Column(elem_id="column_output"):
result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True)
download_output = gr.Button("Download output", elem_id="download_output")
gr.HTML("""
<button id="fullscreen" onclick="document.body.querySelector('#main_row').requestFullscreen();">fullscreen</button>
""")
eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image])
line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image])
demo.load(None,None,None,_js=scripts)
inputs = [image, item]
outputs = [result, download_sketch, download_output]
item.change(fn=run, inputs=inputs, outputs=outputs)
image.change(fn=run, inputs=inputs, outputs=outputs,)
if __name__ == "__main__":
demo.queue().launch(debug=True)
|