File size: 24,940 Bytes
de6e775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import copy
import os
import urllib
import zipfile
from datetime import *
from pathlib import Path
from typing import List

import numpy as np
import pandas as pd
import stockstats
import talib

from finnlp.utils.config import BINANCE_BASE_URL
from finnlp.utils.config import TIME_ZONE_BERLIN
from finnlp.utils.config import TIME_ZONE_JAKARTA
from finnlp.utils.config import TIME_ZONE_PARIS
from finnlp.utils.config import TIME_ZONE_SELFDEFINED
from finnlp.utils.config import TIME_ZONE_SHANGHAI
from finnlp.utils.config import TIME_ZONE_USEASTERN
from finnlp.utils.config import USE_TIME_ZONE_SELFDEFINED
from finnlp.utils.config_tickers import CAC_40_TICKER
from finnlp.utils.config_tickers import CSI_300_TICKER
from finnlp.utils.config_tickers import DAX_30_TICKER
from finnlp.utils.config_tickers import DOW_30_TICKER
from finnlp.utils.config_tickers import HSI_50_TICKER
from finnlp.utils.config_tickers import LQ45_TICKER
from finnlp.utils.config_tickers import MDAX_50_TICKER
from finnlp.utils.config_tickers import NAS_100_TICKER
from finnlp.utils.config_tickers import SDAX_50_TICKER
from finnlp.utils.config_tickers import SP_500_TICKER
from finnlp.utils.config_tickers import SSE_50_TICKER
from finnlp.utils.config_tickers import TECDAX_TICKER


class _Base:
    def __init__(
        self,
        data_source: str,
        start_date: str,
        end_date: str,
        time_interval: str,
        **kwargs,
    ):
        self.data_source: str = data_source
        self.start_date: str = start_date
        self.end_date: str = end_date
        self.time_interval: str = time_interval  # standard time_interval
        # transferred_time_interval will be supported in the future.
        # self.nonstandard_time_interval: str = self.calc_nonstandard_time_interval()  # transferred time_interval of this processor
        self.time_zone: str = ""
        self.dataframe: pd.DataFrame = pd.DataFrame()
        self.dictnumpy: dict = (
            {}
        )  # e.g., self.dictnumpy["open"] = np.array([1, 2, 3]), self.dictnumpy["close"] = np.array([1, 2, 3])

    def download_data(self, ticker_list: List[str]):
        pass

    def clean_data(self):
        if "date" in self.dataframe.columns.values.tolist():
            self.dataframe.rename(columns={"date": "time"}, inplace=True)
        if "datetime" in self.dataframe.columns.values.tolist():
            self.dataframe.rename(columns={"datetime": "time"}, inplace=True)
        if self.data_source == "ccxt":
            self.dataframe.rename(columns={"index": "time"}, inplace=True)

        if self.data_source == "ricequant":
            """RiceQuant data is already cleaned, we only need to transform data format here.
            No need for filling NaN data"""
            self.dataframe.rename(columns={"order_book_id": "tic"}, inplace=True)
            # raw df uses multi-index (tic,time), reset it to single index (time)
            self.dataframe.reset_index(level=[0, 1], inplace=True)
            # check if there is NaN values
            assert not self.dataframe.isnull().values.any()
        elif self.data_source == "baostock":
            self.dataframe.rename(columns={"code": "tic"}, inplace=True)

        self.dataframe.dropna(inplace=True)
        # adjusted_close: adjusted close price
        if "adjusted_close" not in self.dataframe.columns.values.tolist():
            self.dataframe["adjusted_close"] = self.dataframe["close"]
        self.dataframe.sort_values(by=["time", "tic"], inplace=True)
        self.dataframe = self.dataframe[
            [
                "tic",
                "time",
                "open",
                "high",
                "low",
                "close",
                "adjusted_close",
                "volume",
            ]
        ]

    def fillna(self):
        df = self.dataframe

        dfcode = pd.DataFrame(columns=["tic"])
        dfdate = pd.DataFrame(columns=["time"])

        dfcode.tic = df.tic.unique()
        dfdate.time = df.time.unique()
        dfdate.sort_values(by="time", ascending=False, ignore_index=True, inplace=True)

        # the old pandas may not support pd.merge(how="cross")
        try:
            df1 = pd.merge(dfcode, dfdate, how="cross")
        except:
            print("Please wait for a few seconds...")
            df1 = pd.DataFrame(columns=["tic", "time"])
            for i in range(dfcode.shape[0]):
                for j in range(dfdate.shape[0]):
                    df1 = df1.append(
                        pd.DataFrame(
                            data={
                                "tic": dfcode.iat[i, 0],
                                "time": dfdate.iat[j, 0],
                            },
                            index=[(i + 1) * (j + 1) - 1],
                        )
                    )

        df = pd.merge(df1, df, how="left", on=["tic", "time"])

        # back fill missing data then front fill
        df_new = pd.DataFrame(columns=df.columns)
        for i in df.tic.unique():
            df_tmp = df[df.tic == i].fillna(method="bfill").fillna(method="ffill")
            df_new = pd.concat([df_new, df_tmp], ignore_index=True)

        df_new = df_new.fillna(0)

        # reshape dataframe
        df_new = df_new.sort_values(by=["time", "tic"]).reset_index(drop=True)

        print("Shape of DataFrame: ", df_new.shape)

        self.dataframe = df_new

    def get_trading_days(self, start: str, end: str) -> List[str]:
        if self.data_source in [
            "binance",
            "ccxt",
            "quantconnect",
            "ricequant",
            "tushare",
        ]:
            print(
                f"Calculate get_trading_days not supported for {self.data_source} yet."
            )
            return None

    # select_stockstats_talib: 0 (stockstats, default), or 1 (use talib). Users can choose the method.
    # drop_na_timestep: 0 (not dropping timesteps that contain nan), or 1 (dropping timesteps that contain nan, default). Users can choose the method.
    def add_technical_indicator(
        self,
        tech_indicator_list: List[str],
        select_stockstats_talib: int = 0,
        drop_na_timesteps: int = 1,
    ):
        """
        calculate technical indicators
        use stockstats/talib package to add technical inidactors
        :param data: (df) pandas dataframe
        :return: (df) pandas dataframe
        """
        if "date" in self.dataframe.columns.values.tolist():
            self.dataframe.rename(columns={"date": "time"}, inplace=True)

        if self.data_source == "ccxt":
            self.dataframe.rename(columns={"index": "time"}, inplace=True)

        self.dataframe.reset_index(drop=False, inplace=True)
        if "level_1" in self.dataframe.columns:
            self.dataframe.drop(columns=["level_1"], inplace=True)
        if "level_0" in self.dataframe.columns and "tic" not in self.dataframe.columns:
            self.dataframe.rename(columns={"level_0": "tic"}, inplace=True)
        assert select_stockstats_talib in {0, 1}
        print("tech_indicator_list: ", tech_indicator_list)
        if select_stockstats_talib == 0:  # use stockstats
            stock = stockstats.StockDataFrame.retype(self.dataframe)
            unique_ticker = stock.tic.unique()
            for indicator in tech_indicator_list:
                print("indicator: ", indicator)
                indicator_df = pd.DataFrame()
                for i in range(len(unique_ticker)):
                    try:
                        temp_indicator = stock[stock.tic == unique_ticker[i]][indicator]
                        temp_indicator = pd.DataFrame(temp_indicator)
                        temp_indicator["tic"] = unique_ticker[i]
                        temp_indicator["time"] = self.dataframe[
                            self.dataframe.tic == unique_ticker[i]
                        ]["time"].to_list()
                        indicator_df = pd.concat(
                            [indicator_df, temp_indicator],
                            axis=0,
                            join="outer",
                            ignore_index=True,
                        )
                    except Exception as e:
                        print(e)
                if not indicator_df.empty:
                    self.dataframe = self.dataframe.merge(
                        indicator_df[["tic", "time", indicator]],
                        on=["tic", "time"],
                        how="left",
                    )
        else:  # use talib
            final_df = pd.DataFrame()
            for i in self.dataframe.tic.unique():
                tic_df = self.dataframe[self.dataframe.tic == i]
                (
                    tic_df.loc["macd"],
                    tic_df.loc["macd_signal"],
                    tic_df.loc["macd_hist"],
                ) = talib.MACD(
                    tic_df["close"],
                    fastperiod=12,
                    slowperiod=26,
                    signalperiod=9,
                )
                tic_df.loc["rsi"] = talib.RSI(tic_df["close"], timeperiod=14)
                tic_df.loc["cci"] = talib.CCI(
                    tic_df["high"],
                    tic_df["low"],
                    tic_df["close"],
                    timeperiod=14,
                )
                tic_df.loc["dx"] = talib.DX(
                    tic_df["high"],
                    tic_df["low"],
                    tic_df["close"],
                    timeperiod=14,
                )
                final_df = pd.concat([final_df, tic_df], axis=0, join="outer")
            self.dataframe = final_df

        self.dataframe.sort_values(by=["time", "tic"], inplace=True)
        if drop_na_timesteps:
            time_to_drop = self.dataframe[
                self.dataframe.isna().any(axis=1)
            ].time.unique()
            self.dataframe = self.dataframe[~self.dataframe.time.isin(time_to_drop)]
        print("Succesfully add technical indicators")

    def add_turbulence(self):
        """
        add turbulence index from a precalcualted dataframe
        :param data: (df) pandas dataframe
        :return: (df) pandas dataframe
        """
        # df = data.copy()
        # turbulence_index = self.calculate_turbulence(df)
        # df = df.merge(turbulence_index, on="time")
        # df = df.sort_values(["time", "tic"]).reset_index(drop=True)
        # return df
        if self.data_source in [
            "binance",
            "ccxt",
            "iexcloud",
            "joinquant",
            "quantconnect",
        ]:
            print(
                f"Turbulence not supported for {self.data_source} yet. Return original DataFrame."
            )
        if self.data_source in [
            "alpaca",
            "ricequant",
            "tushare",
            "wrds",
            "yahoofinance",
        ]:
            turbulence_index = self.calculate_turbulence()
            self.dataframe = self.dataframe.merge(turbulence_index, on="time")
            self.dataframe.sort_values(["time", "tic"], inplace=True)
            self.dataframe.reset_index(drop=True, inplace=True)

    def calculate_turbulence(self, time_period: int = 252) -> pd.DataFrame:
        """calculate turbulence index based on dow 30"""
        # can add other market assets
        df_price_pivot = self.dataframe.pivot(
            index="time", columns="tic", values="close"
        )
        # use returns to calculate turbulence
        df_price_pivot = df_price_pivot.pct_change()

        unique_date = self.dataframe["time"].unique()
        # start after a year
        start = time_period
        turbulence_index = [0] * start
        # turbulence_index = [0]
        count = 0
        for i in range(start, len(unique_date)):
            current_price = df_price_pivot[df_price_pivot.index == unique_date[i]]
            # use one year rolling window to calcualte covariance
            hist_price = df_price_pivot[
                (df_price_pivot.index < unique_date[i])
                & (df_price_pivot.index >= unique_date[i - time_period])
            ]
            # Drop tickers which has number missing values more than the "oldest" ticker
            filtered_hist_price = hist_price.iloc[
                hist_price.isna().sum().min() :
            ].dropna(axis=1)

            cov_temp = filtered_hist_price.cov()
            current_temp = current_price[list(filtered_hist_price)] - np.mean(
                filtered_hist_price, axis=0
            )
            # cov_temp = hist_price.cov()
            # current_temp=(current_price - np.mean(hist_price,axis=0))

            temp = current_temp.values.dot(np.linalg.pinv(cov_temp)).dot(
                current_temp.values.T
            )
            if temp > 0:
                count += 1
                # avoid large outlier because of the calculation just begins: else turbulence_temp = 0
                turbulence_temp = temp[0][0] if count > 2 else 0
            else:
                turbulence_temp = 0
            turbulence_index.append(turbulence_temp)

        turbulence_index = pd.DataFrame(
            {"time": df_price_pivot.index, "turbulence": turbulence_index}
        )
        return turbulence_index

    def add_vix(self):
        """
        add vix from processors
        :param data: (df) pandas dataframe
        :return: (df) pandas dataframe
        """
        if self.data_source in [
            "binance",
            "ccxt",
            "iexcloud",
            "joinquant",
            "quantconnect",
            "ricequant",
            "tushare",
        ]:
            print(
                f"VIX is not applicable for {self.data_source}. Return original DataFrame"
            )
            return None

        # if self.data_source == 'yahoofinance':
        #     df = data.copy()
        #     df_vix = self.download_data(
        #         start_date=df.time.min(),
        #         end_date=df.time.max(),
        #         ticker_list=["^VIX"],
        #         time_interval=self.time_interval,
        #     )
        #     df_vix = self.clean_data(df_vix)
        #     vix = df_vix[["time", "adjusted_close"]]
        #     vix.columns = ["time", "vix"]
        #
        #     df = df.merge(vix, on="time")
        #     df = df.sort_values(["time", "tic"]).reset_index(drop=True)
        # elif self.data_source == 'alpaca':
        #     vix_df = self.download_data(["VIXY"], self.start, self.end, self.time_interval)
        #     cleaned_vix = self.clean_data(vix_df)
        #     vix = cleaned_vix[["time", "close"]]
        #     vix = vix.rename(columns={"close": "VIXY"})
        #
        #     df = data.copy()
        #     df = df.merge(vix, on="time")
        #     df = df.sort_values(["time", "tic"]).reset_index(drop=True)
        # elif self.data_source == 'wrds':
        #     vix_df = self.download_data(['vix'], self.start, self.end_date, self.time_interval)
        #     cleaned_vix = self.clean_data(vix_df)
        #     vix = cleaned_vix[['date', 'close']]
        #
        #     df = data.copy()
        #     df = df.merge(vix, on="date")
        #     df = df.sort_values(["date", "tic"]).reset_index(drop=True)

        elif self.data_source == "yahoofinance":
            ticker = "^VIX"
        elif self.data_source == "alpaca":
            ticker = "VIXY"
        elif self.data_source == "wrds":
            ticker = "vix"
        else:
            pass
        df = self.dataframe.copy()
        self.dataframe = [ticker]
        # self.download_data(self.start_date, self.end_date, self.time_interval)
        self.download_data([ticker], save_path="./data/vix.csv")
        self.clean_data()
        cleaned_vix = self.dataframe
        # .rename(columns={ticker: "vix"})
        vix = cleaned_vix[["time", "close"]]
        cleaned_vix = vix.rename(columns={"close": "vix"})

        df = df.merge(cleaned_vix, on="time")
        df = df.sort_values(["time", "tic"]).reset_index(drop=True)
        self.dataframe = df

    def df_to_array(self, tech_indicator_list: List[str], if_vix: bool):
        unique_ticker = self.dataframe.tic.unique()
        price_array = np.column_stack(
            [self.dataframe[self.dataframe.tic == tic].close for tic in unique_ticker]
        )
        common_tech_indicator_list = [
            i
            for i in tech_indicator_list
            if i in self.dataframe.columns.values.tolist()
        ]
        tech_array = np.hstack(
            [
                self.dataframe.loc[
                    (self.dataframe.tic == tic), common_tech_indicator_list
                ]
                for tic in unique_ticker
            ]
        )
        if if_vix:
            risk_array = np.column_stack(
                [self.dataframe[self.dataframe.tic == tic].vix for tic in unique_ticker]
            )
        else:
            risk_array = (
                np.column_stack(
                    [
                        self.dataframe[self.dataframe.tic == tic].turbulence
                        for tic in unique_ticker
                    ]
                )
                if "turbulence" in self.dataframe.columns
                else None
            )
        print("Successfully transformed into array")
        return price_array, tech_array, risk_array

    # standard_time_interval  s: second, m: minute, h: hour, d: day, w: week, M: month, q: quarter, y: year
    # output time_interval of the processor
    def calc_nonstandard_time_interval(self) -> str:
        if self.data_source == "alpaca":
            pass
        elif self.data_source == "baostock":
            # nonstandard_time_interval: 默认为d,日k线;d=日k线、w=周、m=月、5=5分钟、15=15分钟、30=30分钟、60=60分钟k线数据,不区分大小写;指数没有分钟线数据;周线每周最后一个交易日才可以获取,月线每月最后一个交易日才可以获取。
            pass
            time_intervals = ["5m", "15m", "30m", "60m", "1d", "1w", "1M"]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            if (
                "d" in self.time_interval
                or "w" in self.time_interval
                or "M" in self.time_interval
            ):
                return self.time_interval[-1:].lower()
            elif "m" in self.time_interval:
                return self.time_interval[:-1]
        elif self.data_source == "binance":
            # nonstandard_time_interval: 1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,1M
            time_intervals = [
                "1m",
                "3m",
                "5m",
                "15m",
                "30m",
                "1h",
                "2h",
                "4h",
                "6h",
                "8h",
                "12h",
                "1d",
                "3d",
                "1w",
                "1M",
            ]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            return self.time_interval
        elif self.data_source == "ccxt":
            pass
        elif self.data_source == "iexcloud":
            time_intervals = ["1d"]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            return self.time_interval.upper()
        elif self.data_source == "joinquant":
            # '1m', '5m', '15m', '30m', '60m', '120m', '1d', '1w', '1M'
            time_intervals = [
                "1m",
                "5m",
                "15m",
                "30m",
                "60m",
                "120m",
                "1d",
                "1w",
                "1M",
            ]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            return self.time_interval
        elif self.data_source == "quantconnect":
            pass
        elif self.data_source == "ricequant":
            #  nonstandard_time_interval: 'd' - 天,'w' - 周,'m' - 月, 'q' - 季,'y' - 年
            time_intervals = ["d", "w", "M", "q", "y"]
            assert self.time_interval[-1] in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            if "M" in self.time_interval:
                return self.time_interval.lower()
            else:
                return self.time_interval
        elif self.data_source == "tushare":
            # 分钟频度包括1分、5、15、30、60分数据. Not support currently.
            # time_intervals = ["1m", "5m", "15m", "30m", "60m", "1d"]
            time_intervals = ["1d"]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            return self.time_interval
        elif self.data_source == "wrds":
            pass
        elif self.data_source == "yahoofinance":
            # nonstandard_time_interval: ["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d","1wk", "1mo", "3mo"]
            time_intervals = [
                "1m",
                "2m",
                "5m",
                "15m",
                "30m",
                "60m",
                "90m",
                "1h",
                "1d",
                "5d",
                "1w",
                "1M",
                "3M",
            ]
            assert self.time_interval in time_intervals, (
                "This time interval is not supported. Supported time intervals: "
                + ",".join(time_intervals)
            )
            if "w" in self.time_interval:
                return self.time_interval + "k"
            elif "M" in self.time_interval:
                return self.time_interval[:-1] + "mo"
            else:
                return self.time_interval
        else:
            raise ValueError(
                f"Not support transfer_standard_time_interval for {self.data_source}"
            )

    # "600000.XSHG" -> "sh.600000"
    # "000612.XSHE" -> "sz.000612"
    def transfer_standard_ticker_to_nonstandard(self, ticker: str) -> str:
        return ticker

    def save_data(self, path):
        if ".csv" in path:
            path = path.split("/")
            filename = path[-1]
            path = "/".join(path[:-1] + [""])
        else:
            if path[-1] == "/":
                filename = "dataset.csv"
            else:
                filename = "/dataset.csv"

        os.makedirs(path, exist_ok=True)
        self.dataframe.to_csv(path + filename, index=False)

    def load_data(self, path):
        assert ".csv" in path  # only support csv format now
        self.dataframe = pd.read_csv(path)
        columns = self.dataframe.columns
        print(f"{path} loaded")
        # # check loaded file
        # assert "date" in columns or "time" in columns
        # assert "close" in columns


def calc_time_zone(
    ticker_list: List[str],
    time_zone_selfdefined: str,
    use_time_zone_selfdefined: int,
) -> str:
    assert isinstance(ticker_list, list)
    ticker_list = ticker_list[0]
    if use_time_zone_selfdefined == 1:
        time_zone = time_zone_selfdefined
    elif ticker_list in HSI_50_TICKER + SSE_50_TICKER + CSI_300_TICKER:
        time_zone = TIME_ZONE_SHANGHAI
    elif ticker_list in DOW_30_TICKER + NAS_100_TICKER + SP_500_TICKER:
        time_zone = TIME_ZONE_USEASTERN
    elif ticker_list == CAC_40_TICKER:
        time_zone = TIME_ZONE_PARIS
    elif ticker_list in DAX_30_TICKER + TECDAX_TICKER + MDAX_50_TICKER + SDAX_50_TICKER:
        time_zone = TIME_ZONE_BERLIN
    elif ticker_list == LQ45_TICKER:
        time_zone = TIME_ZONE_JAKARTA
    else:
        # hack needed to have this working with vix indicator
        # fix: unable to set time_zone_selfdefined from top-level dataprocessor class
        time_zone = TIME_ZONE_USEASTERN
        # raise ValueError("Time zone is wrong.")
    return time_zone


def check_date(d: str) -> bool:
    assert (
        len(d) == 10
    ), "Please check the length of date and use the correct date like 2020-01-01."
    indices = [0, 1, 2, 3, 5, 6, 8, 9]
    correct = True
    for i in indices:
        if not d[i].isdigit():
            correct = False
            break
    if not correct:
        raise ValueError("Please use the correct date like 2020-01-01.")
    return correct