Spaces:
Build error
Build error
File size: 23,210 Bytes
f8c5b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
#pragma once
//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
// - a set of tensor operations
// - automatic differentiation
// - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
// - linear regression
// - support vector machines
// - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
// {
// struct ggml_v1_init_params params = {
// .mem_size = 16*1024*1024,
// .mem_buffer = NULL,
// };
//
// // memory allocation happens here
// struct ggml_v1_context * ctx = ggml_v1_init(params);
//
// struct ggml_v1_tensor * x = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
//
// ggml_v1_set_param(ctx, x); // x is an input variable
//
// struct ggml_v1_tensor * a = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
// struct ggml_v1_tensor * b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
// struct ggml_v1_tensor * x2 = ggml_v1_mul(ctx, x, x);
// struct ggml_v1_tensor * f = ggml_v1_add(ctx, ggml_v1_mul(ctx, a, x2), b);
//
// ...
// }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
// {
// ...
//
// struct ggml_v1_cgraph gf = ggml_v1_build_forward(f);
//
// // set the input variable and parameter values
// ggml_v1_set_f32(x, 2.0f);
// ggml_v1_set_f32(a, 3.0f);
// ggml_v1_set_f32(b, 4.0f);
//
// ggml_v1_graph_compute(ctx0, &gf);
//
// printf("f = %f\n", ggml_v1_get_f32_1d(f, 0));
//
// ...
// }
//
// The actual computation is performed in the ggml_v1_graph_compute() function.
//
// The ggml_v1_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_v1_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_v1_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_v1_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_v1_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
// - ggml_v1_permute()
// - ggml_v1_conv_1d_1s()
// - ggml_v1_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
// What is Automatic Differentiation?
// https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_v1_tensor)
//
// The tensors are stored in memory via the ggml_v1_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
// {
// struct ggml_v1_tensor * c = ggml_v1_add(ctx, a, b);
//
// assert(c->src[0] == a);
// assert(c->src[1] == b);
// }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_v1_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
// struct ggml_v1_tensor * a = ggml_v1_new_tensor_2d(ctx, GGML_V1_TYPE_F32, 2, 3);
//
// // a[1, 2] = 1.0f;
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
//
// // a[2, 0] = 2.0f;
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
//
// ...
// }
//
// Alternatively, there are helper functions, such as ggml_v1_get_f32_1d() and ggml_v1_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_v1_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#define GGML_V1_MAX_DIMS 4
#define GGML_V1_MAX_NODES 4096
#define GGML_V1_MAX_PARAMS 16
#define GGML_V1_MAX_CONTEXTS 64
#define GGML_V1_MAX_OPT 4
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
typedef __fp16 ggml_v1_fp16_t;
#else
typedef uint16_t ggml_v1_fp16_t;
#endif
// convert FP16 <-> FP32
float ggml_v1_fp16_to_fp32(ggml_v1_fp16_t x);
ggml_v1_fp16_t ggml_v1_fp32_to_fp16(float x);
struct ggml_v1_object;
struct ggml_v1_context;
enum ggml_v1_type {
GGML_V1_TYPE_Q4_0,
GGML_V1_TYPE_Q4_1,
GGML_V1_TYPE_I8,
GGML_V1_TYPE_I16,
GGML_V1_TYPE_I32,
GGML_V1_TYPE_F16,
GGML_V1_TYPE_F32,
GGML_V1_TYPE_COUNT,
};
// available tensor operations:
enum ggml_v1_op {
GGML_V1_OP_NONE = 0,
GGML_V1_OP_DUP,
GGML_V1_OP_ADD,
GGML_V1_OP_SUB,
GGML_V1_OP_MUL,
GGML_V1_OP_DIV,
GGML_V1_OP_SQR,
GGML_V1_OP_SQRT,
GGML_V1_OP_SUM,
GGML_V1_OP_MEAN,
GGML_V1_OP_REPEAT,
GGML_V1_OP_ABS,
GGML_V1_OP_SGN,
GGML_V1_OP_NEG,
GGML_V1_OP_STEP,
GGML_V1_OP_RELU,
GGML_V1_OP_GELU,
GGML_V1_OP_NORM, // normalize
GGML_V1_OP_MUL_MAT,
GGML_V1_OP_SCALE,
GGML_V1_OP_CPY,
GGML_V1_OP_RESHAPE,
GGML_V1_OP_VIEW,
GGML_V1_OP_PERMUTE,
GGML_V1_OP_TRANSPOSE,
GGML_V1_OP_GET_ROWS,
GGML_V1_OP_DIAG_MASK_INF,
GGML_V1_OP_SOFT_MAX,
GGML_V1_OP_ROPE,
GGML_V1_OP_CONV_1D_1S,
GGML_V1_OP_CONV_1D_2S,
GGML_V1_OP_FLASH_ATTN,
GGML_V1_OP_FLASH_FF,
GGML_V1_OP_COUNT,
};
// n-dimensional tensor
struct ggml_v1_tensor {
enum ggml_v1_type type;
int n_dims;
int ne[GGML_V1_MAX_DIMS]; // number of elements
size_t nb[GGML_V1_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_v1_op op;
bool is_param;
struct ggml_v1_tensor * grad;
struct ggml_v1_tensor * src0;
struct ggml_v1_tensor * src1;
struct ggml_v1_tensor * opt[GGML_V1_MAX_OPT];
// thread scheduling
int n_tasks;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
void * data;
char padding[8];
};
// computation graph
struct ggml_v1_cgraph {
int n_nodes;
int n_leafs;
int n_threads;
size_t work_size;
struct ggml_v1_tensor * work;
struct ggml_v1_tensor * nodes[GGML_V1_MAX_NODES];
struct ggml_v1_tensor * grads[GGML_V1_MAX_NODES];
struct ggml_v1_tensor * leafs[GGML_V1_MAX_NODES];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
// scratch buffer
struct ggml_v1_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_v1_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
};
void ggml_v1_time_init(void); // call this once at the beginning of the program
int64_t ggml_v1_time_ms(void);
int64_t ggml_v1_time_us(void);
int64_t ggml_v1_cycles(void);
int64_t ggml_v1_cycles_per_ms(void);
void ggml_v1_print_object (const struct ggml_v1_object * obj);
void ggml_v1_print_objects(const struct ggml_v1_context * ctx);
int ggml_v1_nelements(const struct ggml_v1_tensor * tensor);
size_t ggml_v1_nbytes (const struct ggml_v1_tensor * tensor);
int ggml_v1_blck_size (enum ggml_v1_type type);
size_t ggml_v1_type_size (enum ggml_v1_type type); // size in bytes for all elements in a block
float ggml_v1_type_sizef(enum ggml_v1_type type); // ggml_v1_type_size()/ggml_v1_blck_size() as float
size_t ggml_v1_element_size(const struct ggml_v1_tensor * tensor);
struct ggml_v1_context * ggml_v1_init(struct ggml_v1_init_params params);
void ggml_v1_free(struct ggml_v1_context * ctx);
size_t ggml_v1_used_mem(const struct ggml_v1_context * ctx);
size_t ggml_v1_set_scratch(struct ggml_v1_context * ctx, struct ggml_v1_scratch scratch);
struct ggml_v1_tensor * ggml_v1_new_tensor(
struct ggml_v1_context * ctx,
enum ggml_v1_type type,
int n_dims,
const int *ne);
struct ggml_v1_tensor * ggml_v1_new_tensor_1d(
struct ggml_v1_context * ctx,
enum ggml_v1_type type,
int ne0);
struct ggml_v1_tensor * ggml_v1_new_tensor_2d(
struct ggml_v1_context * ctx,
enum ggml_v1_type type,
int ne0,
int ne1);
struct ggml_v1_tensor * ggml_v1_new_tensor_3d(
struct ggml_v1_context * ctx,
enum ggml_v1_type type,
int ne0,
int ne1,
int ne2);
struct ggml_v1_tensor * ggml_v1_new_tensor_4d(
struct ggml_v1_context * ctx,
enum ggml_v1_type type,
int ne0,
int ne1,
int ne2,
int ne3);
struct ggml_v1_tensor * ggml_v1_new_i32(struct ggml_v1_context * ctx, int32_t value);
struct ggml_v1_tensor * ggml_v1_new_f32(struct ggml_v1_context * ctx, float value);
struct ggml_v1_tensor * ggml_v1_dup_tensor (struct ggml_v1_context * ctx, const struct ggml_v1_tensor * src);
struct ggml_v1_tensor * ggml_v1_view_tensor(struct ggml_v1_context * ctx, const struct ggml_v1_tensor * src);
struct ggml_v1_tensor * ggml_v1_set_zero(struct ggml_v1_tensor * tensor);
struct ggml_v1_tensor * ggml_v1_set_i32 (struct ggml_v1_tensor * tensor, int32_t value);
struct ggml_v1_tensor * ggml_v1_set_f32 (struct ggml_v1_tensor * tensor, float value);
int32_t ggml_v1_get_i32_1d(const struct ggml_v1_tensor * tensor, int i);
void ggml_v1_set_i32_1d(const struct ggml_v1_tensor * tensor, int i, int32_t value);
float ggml_v1_get_f32_1d(const struct ggml_v1_tensor * tensor, int i);
void ggml_v1_set_f32_1d(const struct ggml_v1_tensor * tensor, int i, float value);
void * ggml_v1_get_data (const struct ggml_v1_tensor * tensor);
float * ggml_v1_get_data_f32(const struct ggml_v1_tensor * tensor);
//
// operations on tensors with backpropagation
//
struct ggml_v1_tensor * ggml_v1_dup(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_add(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_sub(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_mul(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_div(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_sqr(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_sqrt(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// return scalar
// TODO: compute sum along rows
struct ggml_v1_tensor * ggml_v1_sum(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// mean along rows
struct ggml_v1_tensor * ggml_v1_mean(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
struct ggml_v1_tensor * ggml_v1_repeat(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_abs(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_sgn(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_neg(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_step(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_relu(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// TODO: double-check this computation is correct
struct ggml_v1_tensor * ggml_v1_gelu(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
struct ggml_v1_tensor * ggml_v1_norm(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows
struct ggml_v1_tensor * ggml_v1_mul_mat(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
//
// operations on tensors without backpropagation
//
// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_scale(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
// a -> b, return view(b)
struct ggml_v1_tensor * ggml_v1_cpy(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape_2d(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int ne0,
int ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape_3d(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int ne0,
int ne1,
int ne2);
// offset in bytes
struct ggml_v1_tensor * ggml_v1_view_1d(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int ne0,
size_t offset);
struct ggml_v1_tensor * ggml_v1_view_2d(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int ne0,
int ne1,
size_t nb1, // row stride in bytes
size_t offset);
struct ggml_v1_tensor * ggml_v1_permute(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_v1_permute(ctx, a, 1, 0, 2, 3)
struct ggml_v1_tensor * ggml_v1_transpose(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
struct ggml_v1_tensor * ggml_v1_get_rows(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
// set elements above the diagonal to -INF
// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_diag_mask_inf(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int n_past);
// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_soft_max(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a);
// rotary position embedding
// in-place, returns view(a)
// if mode == 1, skip n_past elements
// TODO: avoid creating a new tensor every time
struct ggml_v1_tensor * ggml_v1_rope(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
int n_past,
int n_dims,
int mode);
// padding = 1
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
struct ggml_v1_tensor * ggml_v1_conv_1d_1s(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_conv_1d_2s(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b);
struct ggml_v1_tensor * ggml_v1_flash_attn(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * q,
struct ggml_v1_tensor * k,
struct ggml_v1_tensor * v,
bool masked);
struct ggml_v1_tensor * ggml_v1_flash_ff(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * a,
struct ggml_v1_tensor * b0,
struct ggml_v1_tensor * b1,
struct ggml_v1_tensor * c0,
struct ggml_v1_tensor * c1);
//
// automatic differentiation
//
void ggml_v1_set_param(
struct ggml_v1_context * ctx,
struct ggml_v1_tensor * tensor);
void ggml_v1_build_forward_expand(struct ggml_v1_cgraph * cgraph, struct ggml_v1_tensor * tensor);
struct ggml_v1_cgraph ggml_v1_build_forward (struct ggml_v1_tensor * tensor);
struct ggml_v1_cgraph ggml_v1_build_backward(struct ggml_v1_context * ctx, struct ggml_v1_cgraph * gf, bool keep);
void ggml_v1_graph_compute(struct ggml_v1_context * ctx, struct ggml_v1_cgraph * cgraph);
void ggml_v1_graph_reset (struct ggml_v1_cgraph * cgraph);
// print info and performance information for the graph
void ggml_v1_graph_print(const struct ggml_v1_cgraph * cgraph);
// dump the graph into a file using the dot format
void ggml_v1_graph_dump_dot(const struct ggml_v1_cgraph * gb, const struct ggml_v1_cgraph * gf, const char * filename);
//
// optimization
//
// optimization methods
enum ggml_v1_opt_type {
GGML_V1_OPT_ADAM,
GGML_V1_OPT_LBFGS,
};
// linesearch methods
enum ggml_v1_linesearch {
GGML_V1_LINESEARCH_DEFAULT = 1,
GGML_V1_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_V1_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_V1_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
// optimization return values
enum ggml_v1_opt_result {
GGML_V1_OPT_OK = 0,
GGML_V1_OPT_DID_NOT_CONVERGE,
GGML_V1_OPT_NO_CONTEXT,
GGML_V1_OPT_INVALID_WOLFE,
GGML_V1_OPT_FAIL,
GGML_V1_LINESEARCH_FAIL = -128,
GGML_V1_LINESEARCH_MINIMUM_STEP,
GGML_V1_LINESEARCH_MAXIMUM_STEP,
GGML_V1_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_V1_LINESEARCH_INVALID_PARAMETERS,
};
// optimization parameters
//
// see ggml.c (ggml_v1_opt_default_params) for default values
//
struct ggml_v1_opt_params {
enum ggml_v1_opt_type type;
int n_threads;
// delta-based convergence test
//
// if past == 0 - disabled
// if past > 0:
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
//
int past;
float delta;
// maximum number of iterations without improvement
//
// if 0 - disabled
// if > 0:
// assume convergence if no cost improvement in this number of iterations
//
int max_no_improvement;
bool print_forward_graph;
bool print_backward_graph;
// ADAM parameters
struct {
int n_iter;
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float eps_f; // epsilon for convergence test
float eps_g; // epsilon for convergence test
} adam;
// LBFGS parameters
struct {
int m; // number of corrections to approximate the inv. Hessian
int n_iter;
int max_linesearch;
float eps; // convergence tolerance
float ftol; // line search tolerance
float wolfe;
float min_step;
float max_step;
enum ggml_v1_linesearch linesearch;
} lbfgs;
};
struct ggml_v1_opt_params ggml_v1_opt_default_params(enum ggml_v1_opt_type type);
// optimize the function defined by the tensor f
enum ggml_v1_opt_result ggml_v1_opt(
struct ggml_v1_context * ctx,
struct ggml_v1_opt_params params,
struct ggml_v1_tensor * f);
//
// system info
//
int ggml_v1_cpu_has_avx(void);
int ggml_v1_cpu_has_avx2(void);
int ggml_v1_cpu_has_avx512(void);
int ggml_v1_cpu_has_fma(void);
int ggml_v1_cpu_has_neon(void);
int ggml_v1_cpu_has_arm_fma(void);
int ggml_v1_cpu_has_f16c(void);
int ggml_v1_cpu_has_fp16_va(void);
int ggml_v1_cpu_has_wasm_simd(void);
int ggml_v1_cpu_has_blas(void);
int ggml_v1_cpu_has_sse3(void);
int ggml_v1_cpu_has_vsx(void);
#ifdef __cplusplus
}
#endif
|