File size: 23,210 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
#pragma once

//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
//   https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
//  - a set of tensor operations
//  - automatic differentiation
//  - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
//  - linear regression
//  - support vector machines
//  - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
//   {
//       struct ggml_v1_init_params params = {
//           .mem_size   = 16*1024*1024,
//           .mem_buffer = NULL,
//       };
//
//       // memory allocation happens here
//       struct ggml_v1_context * ctx = ggml_v1_init(params);
//
//       struct ggml_v1_tensor * x = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
//
//       ggml_v1_set_param(ctx, x); // x is an input variable
//
//       struct ggml_v1_tensor * a  = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
//       struct ggml_v1_tensor * b  = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 1);
//       struct ggml_v1_tensor * x2 = ggml_v1_mul(ctx, x, x);
//       struct ggml_v1_tensor * f  = ggml_v1_add(ctx, ggml_v1_mul(ctx, a, x2), b);
//
//       ...
//   }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
//   {
//       ...
//
//       struct ggml_v1_cgraph gf = ggml_v1_build_forward(f);
//
//       // set the input variable and parameter values
//       ggml_v1_set_f32(x, 2.0f);
//       ggml_v1_set_f32(a, 3.0f);
//       ggml_v1_set_f32(b, 4.0f);
//
//       ggml_v1_graph_compute(ctx0, &gf);
//
//       printf("f = %f\n", ggml_v1_get_f32_1d(f, 0));
//
//       ...
//   }
//
// The actual computation is performed in the ggml_v1_graph_compute() function.
//
// The ggml_v1_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_v1_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_v1_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_v1_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_v1_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
//   - ggml_v1_permute()
//   - ggml_v1_conv_1d_1s()
//   - ggml_v1_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
//   What is Automatic Differentiation?
//   https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_v1_tensor)
//
// The tensors are stored in memory via the ggml_v1_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
//   {
//       struct ggml_v1_tensor * c = ggml_v1_add(ctx, a, b);
//
//       assert(c->src[0] == a);
//       assert(c->src[1] == b);
//   }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_v1_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
//   {
//       struct ggml_v1_tensor * a = ggml_v1_new_tensor_2d(ctx, GGML_V1_TYPE_F32, 2, 3);
//
//       // a[1, 2] = 1.0f;
//       *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
//
//       // a[2, 0] = 2.0f;
//       *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
//
//       ...
//   }
//
// Alternatively, there are helper functions, such as ggml_v1_get_f32_1d() and ggml_v1_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_v1_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//

#ifdef  __cplusplus
extern "C" {
#endif

#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>

#define GGML_V1_MAX_DIMS     4
#define GGML_V1_MAX_NODES    4096
#define GGML_V1_MAX_PARAMS   16
#define GGML_V1_MAX_CONTEXTS 64
#define GGML_V1_MAX_OPT      4

#ifdef __ARM_NEON
// we use the built-in 16-bit float type
typedef __fp16 ggml_v1_fp16_t;
#else
typedef uint16_t ggml_v1_fp16_t;
#endif

// convert FP16 <-> FP32
float       ggml_v1_fp16_to_fp32(ggml_v1_fp16_t x);
ggml_v1_fp16_t ggml_v1_fp32_to_fp16(float x);

struct ggml_v1_object;
struct ggml_v1_context;

enum ggml_v1_type {
    GGML_V1_TYPE_Q4_0,
    GGML_V1_TYPE_Q4_1,
    GGML_V1_TYPE_I8,
    GGML_V1_TYPE_I16,
    GGML_V1_TYPE_I32,
    GGML_V1_TYPE_F16,
    GGML_V1_TYPE_F32,
    GGML_V1_TYPE_COUNT,
};

// available tensor operations:
enum ggml_v1_op {
    GGML_V1_OP_NONE = 0,

    GGML_V1_OP_DUP,
    GGML_V1_OP_ADD,
    GGML_V1_OP_SUB,
    GGML_V1_OP_MUL,
    GGML_V1_OP_DIV,
    GGML_V1_OP_SQR,
    GGML_V1_OP_SQRT,
    GGML_V1_OP_SUM,
    GGML_V1_OP_MEAN,
    GGML_V1_OP_REPEAT,
    GGML_V1_OP_ABS,
    GGML_V1_OP_SGN,
    GGML_V1_OP_NEG,
    GGML_V1_OP_STEP,
    GGML_V1_OP_RELU,
    GGML_V1_OP_GELU,
    GGML_V1_OP_NORM, // normalize

    GGML_V1_OP_MUL_MAT,

    GGML_V1_OP_SCALE,
    GGML_V1_OP_CPY,
    GGML_V1_OP_RESHAPE,
    GGML_V1_OP_VIEW,
    GGML_V1_OP_PERMUTE,
    GGML_V1_OP_TRANSPOSE,
    GGML_V1_OP_GET_ROWS,
    GGML_V1_OP_DIAG_MASK_INF,
    GGML_V1_OP_SOFT_MAX,
    GGML_V1_OP_ROPE,
    GGML_V1_OP_CONV_1D_1S,
    GGML_V1_OP_CONV_1D_2S,

    GGML_V1_OP_FLASH_ATTN,
    GGML_V1_OP_FLASH_FF,

    GGML_V1_OP_COUNT,
};

// n-dimensional tensor
struct ggml_v1_tensor {
    enum ggml_v1_type type;

    int    n_dims;
    int    ne[GGML_V1_MAX_DIMS]; // number of elements
    size_t nb[GGML_V1_MAX_DIMS]; // stride in bytes:
                              // nb[0] = sizeof(type)
                              // nb[1] = nb[0]   * ne[0] + padding
                              // nb[i] = nb[i-1] * ne[i-1]

    // compute data
    enum ggml_v1_op op;

    bool is_param;

    struct ggml_v1_tensor * grad;
    struct ggml_v1_tensor * src0;
    struct ggml_v1_tensor * src1;
    struct ggml_v1_tensor * opt[GGML_V1_MAX_OPT];

    // thread scheduling
    int n_tasks;

    // performance
    int     perf_runs;
    int64_t perf_cycles;
    int64_t perf_time_us;

    void * data;
    char padding[8];
};

// computation graph
struct ggml_v1_cgraph {
    int n_nodes;
    int n_leafs;
    int n_threads;

    size_t work_size;
    struct ggml_v1_tensor * work;

    struct ggml_v1_tensor * nodes[GGML_V1_MAX_NODES];
    struct ggml_v1_tensor * grads[GGML_V1_MAX_NODES];
    struct ggml_v1_tensor * leafs[GGML_V1_MAX_NODES];

    // performance
    int     perf_runs;
    int64_t perf_cycles;
    int64_t perf_time_us;
};

// scratch buffer
struct ggml_v1_scratch {
    size_t offs;
    size_t size;
    void * data;
};

struct ggml_v1_init_params {
    // memory pool
    size_t mem_size;   // bytes
    void * mem_buffer; // if NULL, memory will be allocated internally
};

void    ggml_v1_time_init(void); // call this once at the beginning of the program
int64_t ggml_v1_time_ms(void);
int64_t ggml_v1_time_us(void);
int64_t ggml_v1_cycles(void);
int64_t ggml_v1_cycles_per_ms(void);

void ggml_v1_print_object (const struct ggml_v1_object * obj);
void ggml_v1_print_objects(const struct ggml_v1_context * ctx);

int    ggml_v1_nelements(const struct ggml_v1_tensor * tensor);
size_t ggml_v1_nbytes   (const struct ggml_v1_tensor * tensor);

int    ggml_v1_blck_size (enum ggml_v1_type type);
size_t ggml_v1_type_size (enum ggml_v1_type type); // size in bytes for all elements in a block
float  ggml_v1_type_sizef(enum ggml_v1_type type); // ggml_v1_type_size()/ggml_v1_blck_size() as float

size_t ggml_v1_element_size(const struct ggml_v1_tensor * tensor);

struct ggml_v1_context * ggml_v1_init(struct ggml_v1_init_params params);
void ggml_v1_free(struct ggml_v1_context * ctx);

size_t ggml_v1_used_mem(const struct ggml_v1_context * ctx);

size_t ggml_v1_set_scratch(struct ggml_v1_context * ctx, struct ggml_v1_scratch scratch);

struct ggml_v1_tensor * ggml_v1_new_tensor(
        struct ggml_v1_context * ctx,
        enum   ggml_v1_type type,
        int    n_dims,
        const int *ne);

struct ggml_v1_tensor * ggml_v1_new_tensor_1d(
        struct ggml_v1_context * ctx,
        enum   ggml_v1_type type,
        int    ne0);

struct ggml_v1_tensor * ggml_v1_new_tensor_2d(
        struct ggml_v1_context * ctx,
        enum   ggml_v1_type type,
        int    ne0,
        int    ne1);

struct ggml_v1_tensor * ggml_v1_new_tensor_3d(
        struct ggml_v1_context * ctx,
        enum   ggml_v1_type type,
        int    ne0,
        int    ne1,
        int    ne2);

struct ggml_v1_tensor * ggml_v1_new_tensor_4d(
        struct ggml_v1_context * ctx,
        enum   ggml_v1_type type,
        int    ne0,
        int    ne1,
        int    ne2,
        int    ne3);

struct ggml_v1_tensor * ggml_v1_new_i32(struct ggml_v1_context * ctx, int32_t value);
struct ggml_v1_tensor * ggml_v1_new_f32(struct ggml_v1_context * ctx, float value);

struct ggml_v1_tensor * ggml_v1_dup_tensor (struct ggml_v1_context * ctx, const struct ggml_v1_tensor * src);
struct ggml_v1_tensor * ggml_v1_view_tensor(struct ggml_v1_context * ctx, const struct ggml_v1_tensor * src);

struct ggml_v1_tensor * ggml_v1_set_zero(struct ggml_v1_tensor * tensor);
struct ggml_v1_tensor * ggml_v1_set_i32 (struct ggml_v1_tensor * tensor, int32_t value);
struct ggml_v1_tensor * ggml_v1_set_f32 (struct ggml_v1_tensor * tensor, float value);

int32_t ggml_v1_get_i32_1d(const struct ggml_v1_tensor * tensor, int i);
void    ggml_v1_set_i32_1d(const struct ggml_v1_tensor * tensor, int i, int32_t value);

float ggml_v1_get_f32_1d(const struct ggml_v1_tensor * tensor, int i);
void  ggml_v1_set_f32_1d(const struct ggml_v1_tensor * tensor, int i, float value);

 void * ggml_v1_get_data    (const struct ggml_v1_tensor * tensor);
float * ggml_v1_get_data_f32(const struct ggml_v1_tensor * tensor);

//
// operations on tensors with backpropagation
//

struct ggml_v1_tensor * ggml_v1_dup(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_add(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_sub(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_mul(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_div(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_sqr(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_sqrt(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// return scalar
// TODO: compute sum along rows
struct ggml_v1_tensor * ggml_v1_sum(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// mean along rows
struct ggml_v1_tensor * ggml_v1_mean(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
struct ggml_v1_tensor * ggml_v1_repeat(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_abs(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_sgn(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_neg(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_step(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_relu(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// TODO: double-check this computation is correct
struct ggml_v1_tensor * ggml_v1_gelu(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
struct ggml_v1_tensor * ggml_v1_norm(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows
struct ggml_v1_tensor * ggml_v1_mul_mat(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

//
// operations on tensors without backpropagation
//

// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_scale(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

// a -> b, return view(b)
struct ggml_v1_tensor * ggml_v1_cpy(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape_2d(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   ne0,
        int                   ne1);

// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_v1_tensor * ggml_v1_reshape_3d(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   ne0,
        int                   ne1,
        int                   ne2);

// offset in bytes
struct ggml_v1_tensor * ggml_v1_view_1d(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   ne0,
        size_t                offset);

struct ggml_v1_tensor * ggml_v1_view_2d(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   ne0,
        int                   ne1,
        size_t                nb1, // row stride in bytes
        size_t                offset);

struct ggml_v1_tensor * ggml_v1_permute(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   axis0,
        int                   axis1,
        int                   axis2,
        int                   axis3);

// alias for ggml_v1_permute(ctx, a, 1, 0, 2, 3)
struct ggml_v1_tensor * ggml_v1_transpose(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

struct ggml_v1_tensor * ggml_v1_get_rows(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

// set elements above the diagonal to -INF
// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_diag_mask_inf(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   n_past);

// in-place, returns view(a)
struct ggml_v1_tensor * ggml_v1_soft_max(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a);

// rotary position embedding
// in-place, returns view(a)
// if mode == 1, skip n_past elements
// TODO: avoid creating a new tensor every time
struct ggml_v1_tensor * ggml_v1_rope(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        int                   n_past,
        int                   n_dims,
        int                   mode);

// padding = 1
// TODO: we don't support extra parameters for now
//       that's why we are hard-coding the stride, padding, and dilation
//       not great ..
struct ggml_v1_tensor * ggml_v1_conv_1d_1s(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_conv_1d_2s(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b);

struct ggml_v1_tensor * ggml_v1_flash_attn(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * q,
        struct ggml_v1_tensor  * k,
        struct ggml_v1_tensor  * v,
        bool                  masked);

struct ggml_v1_tensor * ggml_v1_flash_ff(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor  * a,
        struct ggml_v1_tensor  * b0,
        struct ggml_v1_tensor  * b1,
        struct ggml_v1_tensor  * c0,
        struct ggml_v1_tensor  * c1);

//
// automatic differentiation
//

void ggml_v1_set_param(
        struct ggml_v1_context * ctx,
        struct ggml_v1_tensor * tensor);

void ggml_v1_build_forward_expand(struct ggml_v1_cgraph * cgraph, struct ggml_v1_tensor * tensor);

struct ggml_v1_cgraph ggml_v1_build_forward (struct ggml_v1_tensor * tensor);
struct ggml_v1_cgraph ggml_v1_build_backward(struct ggml_v1_context * ctx, struct ggml_v1_cgraph * gf, bool keep);

void ggml_v1_graph_compute(struct ggml_v1_context * ctx, struct ggml_v1_cgraph * cgraph);
void ggml_v1_graph_reset  (struct ggml_v1_cgraph * cgraph);

// print info and performance information for the graph
void ggml_v1_graph_print(const struct ggml_v1_cgraph * cgraph);

// dump the graph into a file using the dot format
void ggml_v1_graph_dump_dot(const struct ggml_v1_cgraph * gb, const struct ggml_v1_cgraph * gf, const char * filename);

//
// optimization
//

// optimization methods
enum ggml_v1_opt_type {
    GGML_V1_OPT_ADAM,
    GGML_V1_OPT_LBFGS,
};

// linesearch methods
enum ggml_v1_linesearch {
    GGML_V1_LINESEARCH_DEFAULT = 1,

    GGML_V1_LINESEARCH_BACKTRACKING_ARMIJO       = 0,
    GGML_V1_LINESEARCH_BACKTRACKING_WOLFE        = 1,
    GGML_V1_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};

// optimization return values
enum ggml_v1_opt_result {
    GGML_V1_OPT_OK = 0,
    GGML_V1_OPT_DID_NOT_CONVERGE,
    GGML_V1_OPT_NO_CONTEXT,
    GGML_V1_OPT_INVALID_WOLFE,
    GGML_V1_OPT_FAIL,

    GGML_V1_LINESEARCH_FAIL = -128,
    GGML_V1_LINESEARCH_MINIMUM_STEP,
    GGML_V1_LINESEARCH_MAXIMUM_STEP,
    GGML_V1_LINESEARCH_MAXIMUM_ITERATIONS,
    GGML_V1_LINESEARCH_INVALID_PARAMETERS,
};

// optimization parameters
//
//   see ggml.c (ggml_v1_opt_default_params) for default values
//
struct ggml_v1_opt_params {
    enum ggml_v1_opt_type type;

    int n_threads;

    // delta-based convergence test
    //
    //   if past == 0 - disabled
    //   if past > 0:
    //     stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
    //
    int past;
    float delta;

    // maximum number of iterations without improvement
    //
    //   if 0 - disabled
    //   if > 0:
    //     assume convergence if no cost improvement in this number of iterations
    //
    int max_no_improvement;

    bool print_forward_graph;
    bool print_backward_graph;

    // ADAM parameters
    struct {
        int n_iter;

        float alpha; // learning rate
        float beta1;
        float beta2;
        float eps;   // epsilon for numerical stability
        float eps_f; // epsilon for convergence test
        float eps_g; // epsilon for convergence test
    } adam;

    // LBFGS parameters
    struct {
        int m; // number of corrections to approximate the inv. Hessian
        int n_iter;
        int max_linesearch;

        float eps;      // convergence tolerance
        float ftol;     // line search tolerance
        float wolfe;
        float min_step;
        float max_step;

        enum ggml_v1_linesearch linesearch;
    } lbfgs;
};

struct ggml_v1_opt_params ggml_v1_opt_default_params(enum ggml_v1_opt_type type);

// optimize the function defined by the tensor f
enum ggml_v1_opt_result ggml_v1_opt(
        struct ggml_v1_context * ctx,
        struct ggml_v1_opt_params params,
        struct ggml_v1_tensor * f);

//
// system info
//

int ggml_v1_cpu_has_avx(void);
int ggml_v1_cpu_has_avx2(void);
int ggml_v1_cpu_has_avx512(void);
int ggml_v1_cpu_has_fma(void);
int ggml_v1_cpu_has_neon(void);
int ggml_v1_cpu_has_arm_fma(void);
int ggml_v1_cpu_has_f16c(void);
int ggml_v1_cpu_has_fp16_va(void);
int ggml_v1_cpu_has_wasm_simd(void);
int ggml_v1_cpu_has_blas(void);
int ggml_v1_cpu_has_sse3(void);
int ggml_v1_cpu_has_vsx(void);

#ifdef  __cplusplus
}
#endif