File size: 8,268 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include "common-ggml.h"

#include <regex>
#include <map>

static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
    {"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
    {"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
    {"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
    {"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
    {"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
};

void ggml_print_ftypes(FILE * fp) {
    for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) {
        fprintf(fp, "  type = \"%s\" or %d\n", it->first.c_str(), it->second);
    }
}

enum ggml_ftype ggml_parse_ftype(const char * str) {
    enum ggml_ftype ftype;
    if (str[0] == 'q') {
        const auto it = GGML_FTYPE_MAP.find(str);
        if (it == GGML_FTYPE_MAP.end()) {
            fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str);
            return GGML_FTYPE_UNKNOWN;
        }
        ftype = it->second;
    } else {
        ftype = (enum ggml_ftype) atoi(str);
    }

    return ftype;
}

bool ggml_common_quantize_0(
        std::ifstream & finp,
        std::ofstream & fout,
        const ggml_ftype ftype,
        const std::vector<std::string> & to_quant,
        const std::vector<std::string> & to_skip) {

    ggml_type qtype = GGML_TYPE_F32;

    switch (ftype) {
        case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
        case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
        case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
        case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
        case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
        case GGML_FTYPE_UNKNOWN:
        case GGML_FTYPE_ALL_F32:
        case GGML_FTYPE_MOSTLY_F16:
        case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
                {
                    fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
                    return false;
                }
    };

    if (!ggml_is_quantized(qtype)) {
        fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype));
        return false;
    }

    size_t total_size_org = 0;
    size_t total_size_new = 0;

    std::vector<float> work;

    std::vector<uint8_t>     data_u8;
    std::vector<ggml_fp16_t> data_f16;
    std::vector<float>       data_f32;

    std::vector<int64_t> hist_all(1 << 4, 0);

    while (true) {
        int32_t n_dims;
        int32_t length;
        int32_t ttype;

        finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
        finp.read(reinterpret_cast<char *>(&length), sizeof(length));
        finp.read(reinterpret_cast<char *>(&ttype),  sizeof(ttype));

        if (finp.eof()) {
            break;
        }

        int32_t nelements = 1;
        int32_t ne[4] = { 1, 1, 1, 1 };
        for (int i = 0; i < n_dims; ++i) {
            finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
            nelements *= ne[i];
        }

        std::string name(length, 0);
        finp.read (&name[0], length);

        printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype));

        bool quantize = false;

        // check if we should quantize this tensor
        for (const auto & s : to_quant) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = true;
                break;
            }
        }

        // check if we should skip this tensor
        for (const auto & s : to_skip) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = false;
                break;
            }
        }

        // quantize only 2D tensors
        quantize &= (n_dims == 2);

        if (quantize) {
            if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) {
                fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
                return false;
            }

            if (ttype == GGML_TYPE_F16) {
                data_f16.resize(nelements);
                finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
                data_f32.resize(nelements);
                for (int i = 0; i < nelements; ++i) {
                    data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
                }
            } else {
                data_f32.resize(nelements);
                finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
            }

            ttype = qtype;
        } else {
            const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t);

            data_u8.resize(nelements*bpe);
            finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
        }

        fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
        fout.write(reinterpret_cast<char *>(&length), sizeof(length));
        fout.write(reinterpret_cast<char *>(&ttype),  sizeof(ttype));
        for (int i = 0; i < n_dims; ++i) {
            fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
        }
        fout.write(&name[0], length);

        if (quantize) {
            work.resize(nelements); // for quantization

            size_t cur_size = 0;
            std::vector<int64_t> hist_cur(1 << 4, 0);

            switch ((ggml_type) ttype) {
                case GGML_TYPE_Q4_0:
                    {
                        cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                    } break;
                case GGML_TYPE_Q4_1:
                    {
                        cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                    } break;
                case GGML_TYPE_Q5_0:
                    {
                        cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                    } break;
                case GGML_TYPE_Q5_1:
                    {
                        cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                    } break;
                case GGML_TYPE_Q8_0:
                    {
                        cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
                    } break;
                case GGML_TYPE_F32:
                case GGML_TYPE_F16:
                case GGML_TYPE_I8:
                case GGML_TYPE_I16:
                case GGML_TYPE_I32:
                case GGML_TYPE_Q8_1:
                case GGML_TYPE_COUNT:
                    {
                        fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
                        return false;
                    }
            }

            fout.write(reinterpret_cast<char *>(work.data()), cur_size);
            total_size_new += cur_size;

            printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
            for (int i = 0; i < (int) hist_cur.size(); ++i) {
                hist_all[i] += hist_cur[i];
            }

            for (int i = 0; i < (int) hist_cur.size(); ++i) {
                printf("%5.3f ", hist_cur[i] / (float)nelements);
            }
            printf("\n");
        } else {
            printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
            fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
            total_size_new += data_u8.size();
        }

        total_size_org += nelements * sizeof(float);
    }

    printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
    printf("%s: quant size  = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));

    {
        int64_t sum_all = 0;
        for (int i = 0; i < (int) hist_all.size(); ++i) {
            sum_all += hist_all[i];
        }

        printf("%s: hist: ", __func__);
        for (int i = 0; i < (int) hist_all.size(); ++i) {
            printf("%5.3f ", hist_all[i] / (float)sum_all);
        }
        printf("\n");
    }

    return true;
}