File size: 7,203 Bytes
924a9f9 23b09ce 924a9f9 23b09ce 1925c5a 23b09ce 089856e 924a9f9 23b09ce 924a9f9 81ac65f 23b09ce 81ac65f 23b09ce 924a9f9 23b09ce 924a9f9 23b09ce 089856e 23b09ce 089856e 1925c5a 23b09ce 089856e 1925c5a 42c7ca2 089856e 1925c5a 23b09ce 1925c5a 23b09ce 089856e 1925c5a 23b09ce 1925c5a 089856e 1925c5a 23b09ce 089856e 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a 23b09ce 1925c5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import pandas as pd
import chromadb
from sentence_transformers import SentenceTransformer
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from PIL import Image
from io import BytesIO
import requests
from huggingface_hub import login
# --- 1. Load Recipes Dataset ---
@st.cache_data
def load_recipes():
try:
recipes_df = pd.read_csv("recipes.csv")
recipes_df = recipes_df.rename(columns={"recipe_name": "title", "directions": "instructions"})
recipes_df = recipes_df[['title', 'ingredients', 'instructions', 'img_src']]
recipes_df.fillna("", inplace=True)
recipes_df["ingredients"] = recipes_df["ingredients"].str.lower().str.replace(r'[^\w\s]', '', regex=True)
recipes_df["combined_text"] = recipes_df["title"] + " " + recipes_df["ingredients"]
return recipes_df
except Exception as e:
st.error(f"⚠ Error loading recipes: {e}")
return pd.DataFrame()
recipes_df = load_recipes()
# --- 2. Load SentenceTransformer Model ---
@st.cache_resource
def load_embedding_model():
return SentenceTransformer("all-mpnet-base-v2")
embedding_model = load_embedding_model()
# --- 3. Initialize ChromaDB ---
chroma_client = chromadb.PersistentClient(path="./chroma_db")
collection = chroma_client.get_or_create_collection(name="recipe_collection")
# --- 4. Generate & Store Embeddings ---
def get_sentence_transformer_embeddings(text):
return embedding_model.encode(text).tolist()
try:
existing_data = collection.get()
existing_ids = set(existing_data["ids"]) if existing_data and "ids" in existing_data else set()
except Exception as e:
st.error(f"⚠ ChromaDB Error: {e}")
existing_ids = set()
for index, row in recipes_df.iterrows():
recipe_id = str(index)
if recipe_id in existing_ids:
continue
embedding = get_sentence_transformer_embeddings(row["combined_text"])
if embedding:
collection.add(embeddings=[embedding], documents=[row["combined_text"]], ids=[recipe_id])
# --- 5. Retrieve Similar Recipes ---
def retrieve_recipes(query, top_k=3):
query_embedding = get_sentence_transformer_embeddings(query)
results = collection.query(query_embeddings=[query_embedding], n_results=top_k)
if results and "ids" in results and results["ids"] and results["ids"][0]:
recipe_indices = [int(id) for id in results["ids"][0] if id.isdigit()]
return recipes_df.iloc[recipe_indices] if recipe_indices else None
return None
hf_token = st.secrets["key"]
if hf_token is None:
raise ValueError("Hugging Face token is missing. Add it as a secret in your Space.")
login(token=hf_token)
# --- 6. Load Mistral-7B-Instruct ---
@st.cache_resource
@st.cache_resource
def load_mistral_model():
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150)
mistral_model = load_mistral_model()
# --- 7. Answer Question Using Mistral ---
def answer_question(query, context=""):
greetings = ["hi", "hello", "hey", "greetings", "how are you", "what's up"]
query_cleaned = query.lower().strip()
# Handle greetings
if query_cleaned in greetings:
return "Hello! I'm here to assist with recipes and food-related questions. 🍽️ What would you like to know?"
# Retrieve relevant recipe
related_recipes = retrieve_recipes(query, top_k=1)
if related_recipes is None or related_recipes.empty:
return "I specialize in recipes! 🍽️ Feel free to ask me about ingredients, cooking methods, or meal ideas. 😊"
# If found, use its instructions as context
context = related_recipes.iloc[0]['instructions']
prompt = f"Context: {context}\n\nQuestion: {query}\nAnswer:"
response = mistral_model(prompt)
if isinstance(response, list) and response:
return response[0].get("generated_text", "I'm not sure, but I can help with recipes! 😊").strip()
return "I'm not sure, but I can help with recipes! 😊"
# --- 8. Classify Query Type ---
@st.cache_resource
def load_classifier():
return pipeline("zero-shot-classification", model="facebook/bart-large-mnli", use_auth_token=True)
classifier = load_classifier()
def classify_query(query):
recipe_keywords = ["make", "cook", "bake", "recipe", "prepare"]
if any(keyword in query.lower() for keyword in recipe_keywords):
return "Recipe Search"
labels = ["Q&A", "Recipe Search"]
result = classifier(query, candidate_labels=labels, multi_label=False)
return result.get("labels", ["Q&A"])[0]
# --- 9. Display Image ---
def display_image(image_url, recipe_name):
try:
if not isinstance(image_url, str) or not image_url.startswith("http"):
raise ValueError("Invalid or missing image URL")
response = requests.get(image_url, timeout=5)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
st.image(image, caption=recipe_name, use_container_width=True)
except requests.exceptions.RequestException as e:
st.warning(f"⚠ Image fetch error: {e}")
placeholder_url = "https://via.placeholder.com/300?text=No+Image"
st.image(placeholder_url, caption=recipe_name, use_container_width=True)
# --- 10. Streamlit UI ---
st.title("🍽️ AI Recipe & Q&A Assistant (Powered by Mistral-7B)")
user_query = st.text_input("Enter your question or recipe search query:", "", key="main_query_input")
if "retrieved_recipes" not in st.session_state:
st.session_state["retrieved_recipes"] = None
if st.button("Ask AI"):
if user_query:
# Handle greetings separately
greeting_response = answer_question(user_query)
if greeting_response.startswith("Hello!"):
st.subheader("🤖 AI Answer:")
st.write(greeting_response)
else:
# Classify query
intent = classify_query(user_query)
if intent == "Q&A":
st.subheader("🤖 AI Answer:")
response = answer_question(user_query)
st.write(response)
elif intent == "Recipe Search":
retrieved_recipes = retrieve_recipes(user_query)
if retrieved_recipes is not None and not retrieved_recipes.empty:
st.session_state["retrieved_recipes"] = retrieved_recipes
st.subheader("🍴 Found Recipes:")
for index, recipe in retrieved_recipes.iterrows():
st.markdown(f"### {recipe['title']}")
st.write(f"**Ingredients:** {recipe['ingredients']}")
st.write(f"**Instructions:** {recipe['instructions']}")
display_image(recipe.get('img_src', ''), recipe['title'])
else:
st.warning("⚠️ No relevant recipes found.")
else:
st.warning("❌ Unable to classify the query.")
|