File size: 4,416 Bytes
10b9192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import logging
import sys
import gradio as gr
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


LARGE_MODEL_BY_LANGUAGE = {
    "Korean": {"model_id": "kresnik/wav2vec2-large-xlsr-korean", "has_lm": True},
}


# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())

# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
CACHED_MODELS_BY_ID = {}


def run(input_file, language, decoding_type, history, model_size="300M"):

    logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")

    history = history or []

    if model_size == "300M":
        model = LARGE_MODEL_BY_LANGUAGE.get(language, None)
    else:
        model = XLARGE_MODEL_BY_LANGUAGE.get(language, None)

    if model is None:
        history.append({
            "error_message": f"Model size {model_size} not found for {language} language :("
        })
    elif decoding_type == "LM" and not model["has_lm"]:
        history.append({
            "error_message": f"LM not available for {language} language :("
        })
    else:

        # model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
        model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
        if model_instance is None:
            model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
            CACHED_MODELS_BY_ID[model["model_id"]] = model_instance

        if decoding_type == "LM":
            processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
            asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, 
                           feature_extractor=processor.feature_extractor, decoder=processor.decoder)
        else:
            processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
            asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, 
                           feature_extractor=processor.feature_extractor, decoder=None)

        transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]

        logger.info(f"Transcription for {input_file}: {transcription}")

        history.append({
            "model_id": model["model_id"],
            "language": language,
            "model_size": model_size,
            "decoding_type": decoding_type,
            "transcription": transcription,
            "error_message": None
        })

    html_output = "<div class='result'>"
    for item in history:
        if item["error_message"] is not None:
            html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
        else:
            url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
            html_output += "<div class='result_item result_item_success'>"
            html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
            html_output += f'{item["transcription"]}<br/>'
            html_output += "</div>"
    html_output += "</div>"

    return html_output, history


gr.Interface(
    run,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
        gr.inputs.Radio(label="Language", choices=LANGUAGES),
        gr.inputs.Radio(label="Decoding type", choices=["greedy"]),
        # gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
        "state"
    ],
    outputs=[
        gr.outputs.HTML(label="Outputs"),
        "state"
    ],
    title="Automatic Speech Recognition",
    description="",
    css="""
    .result {display:flex;flex-direction:column}
    .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
    .result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
    .result_item_error {background-color:#ff7070;color:white;align-self:start}
    """,
    allow_screenshot=False,
    allow_flagging="never",
    theme="grass"
).launch(enable_queue=True)