File size: 19,026 Bytes
cd2465c
3051f7b
f217e4d
 
003a054
2d30f4b
9cf8208
003a054
 
266a724
003a054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978580d
 
 
 
 
003a054
 
bf71114
 
164edec
 
 
e4e5057
 
003a054
e4e5057
 
003a054
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e5057
266a724
 
 
 
 
cd2465c
ff24fe8
9303de6
b1c5569
 
17a8f06
9303de6
efbe74e
 
 
978580d
2d30f4b
f217e4d
9a397ea
 
978580d
f217e4d
6c3f8be
47fa492
 
f217e4d
e4f255d
ecc78e5
978580d
f217e4d
6c3f8be
47fa492
 
f217e4d
2d30f4b
 
978580d
2d30f4b
978580d
 
 
9303de6
978580d
9303de6
efbe74e
b0b3cd4
978580d
9303de6
978580d
2d30f4b
 
978580d
cd2465c
 
 
47fa492
 
 
 
f217e4d
b1c5569
f217e4d
64b9ad0
9303de6
d5ce88c
9724323
5c4b76b
 
 
978580d
 
 
 
9303de6
978580d
9303de6
5c4b76b
b0b3cd4
978580d
9303de6
978580d
 
 
 
 
 
 
7c81d9d
 
b486cec
4b0fbd1
cd2465c
64b9ad0
978580d
 
 
 
7c81d9d
 
b486cec
4b0fbd1
b486cec
efbe74e
 
 
 
 
 
 
 
 
 
 
 
cd2465c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbab3de
cd2465c
 
 
 
 
 
 
f217e4d
 
 
 
 
d5a8945
b1c5569
 
 
 
efbe74e
 
 
 
f217e4d
978580d
164edec
 
 
 
 
6ea5f8e
3f860d6
 
 
 
 
8a38e02
 
164edec
 
9724323
164edec
9724323
 
 
 
 
 
 
164edec
 
e4f255d
e4e5057
164edec
 
e4e5057
164edec
 
003a054
164edec
 
3f860d6
 
 
 
 
8a38e02
 
164edec
 
d6b3ea2
164edec
9724323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164edec
efbe74e
 
 
 
57b3673
efbe74e
 
 
385c5f2
efbe74e
 
 
 
 
 
8a38e02
 
efbe74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164edec
e4f255d
9724323
e4f255d
efbe74e
5c1eec8
efbe74e
5c4b76b
efbe74e
6ea5f8e
c2a2454
 
1a08984
6ea5f8e
 
e4f255d
9724323
164edec
6ea5f8e
 
50d6862
164edec
cd2465c
50d6862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import gradio as gr
import spaces
import torch
from clip_slider_pipeline import CLIPSliderXL
from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler,  AutoencoderKL
import time
import numpy as np
import cv2
from PIL import Image
from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

def process_controlnet_img(image):
    controlnet_img = np.array(image)
    controlnet_img = cv2.Canny(controlnet_img, 100, 200)
    controlnet_img = HWC3(controlnet_img)
    controlnet_img = Image.fromarray(controlnet_img)

# load pipelines
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda"))

pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config)
#pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
# scale = 0.8
# pipe_adapter.set_ip_adapter_scale(scale)
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda"))

controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet
    torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
    "sd-community/sdxl-flash",
    controlnet=controlnet,
    vae=vae,
    torch_dtype=torch.float16,
)
clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda"))

pipe_inv = LEditsPPPipelineStableDiffusionXL.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", vae=vae,
    torch_dtype=torch.float16
)
clip_slider_inv = CLIPSliderXL(sd_pipe=pipe_inv,device=torch.device("cuda"))

@spaces.GPU(duration=120)
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
             x_concept_1, x_concept_2, y_concept_1, y_concept_2, 
             avg_diff_x_1, avg_diff_x_2,
             avg_diff_y_1, avg_diff_y_2,
             img2img_type = None, img = None, 
             controlnet_scale= None, ip_adapter_scale=None,
             edit_threshold=None, edit_guidance_scale = None,
             init_latents=None, zs=None):
    
    start_time = time.time()
    # check if avg diff for directions need to be re-calculated
    print("slider_x", slider_x)
    print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
    
    if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
        avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
        avg_diff_0 = avg_diff[0].to(torch.float16)
        avg_diff_1 = avg_diff[1].to(torch.float16)
        x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
    
    print("avg_diff_0", avg_diff_0.dtype)
    
    if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
        avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
        avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16)
        avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16)
        y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
    end_time = time.time()
    print(f"direction time: {end_time - start_time:.2f} ms")
    
    start_time = time.time()
    
    if img2img_type=="controlnet canny" and img is not None:
        control_img = process_controlnet_img(img)
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
    elif img2img_type=="ip adapter" and img is not None:
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
    elif img2img_type=="inversion":
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), init_latents = init_latents, zs=zs, edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale)
    else: # text to image
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
    
    end_time = time.time()
    print(f"generation time: {end_time - start_time:.2f} ms")
    
    comma_concepts_x = ', '.join(slider_x)
    comma_concepts_y = ', '.join(slider_y)

    avg_diff_x_1 = avg_diff_0.cpu()
    avg_diff_x_2 = avg_diff_1.cpu()
    avg_diff_y_1 = avg_diff_2nd_0.cpu()
    avg_diff_y_2 = avg_diff_2nd_1.cpu()
  
    return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image

@spaces.GPU
def update_scales(x,y,prompt,seed, steps, guidance_scale,
                  avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, 
                  img2img_type = None, img = None,
                  controlnet_scale= None, ip_adapter_scale=None,
                  edit_threshold=None, edit_guidance_scale = None,
                  init_latents=None, zs=None):
    avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
    avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
    if img2img_type=="controlnet canny" and img is not None:
        control_img = process_controlnet_img(img)
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    elif img2img_type=="ip adapter" and img is not None:
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    elif img2img_type=="inversion":
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1),  edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale, init_latents = init_latents, zs=zs)
    else:     
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    return image

@spaces.GPU
def update_x(x,y,prompt,seed, steps, 
             avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
             img2img_type = None,
             img = None):
    avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
    avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
    image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    return image

@spaces.GPU
def update_y(x,y,prompt, seed, steps, 
            avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
            img2img_type = None,
            img = None):
    avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
    avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
    image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    return image

@spaces.GPU
def invert(image, num_inversion_steps=50, skip=0.3):
    _ = clip_slider_inv.pipe.invert(
    source_prompt = "", 
    image = image,
    num_inversion_steps = num_inversion_steps,
    skip = skip
)
    return clip_slider_inv.pipe.init_latents, lip_slider_inv.pipe.zs

def reset_do_inversion():
        return True
css = '''
#group {
    position: relative;
    width: 420px;
    height: 420px;
    margin-bottom: 20px;
    background-color: white
}
#x {
    position: absolute;
    bottom: 0;
    left: 25px;
    width: 400px;
}
#y {
    position: absolute;
    bottom: 20px;
    left: 67px;
    width: 400px;
    transform: rotate(-90deg);
    transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
    
    x_concept_1 = gr.State("")
    x_concept_2 = gr.State("")
    y_concept_1 = gr.State("")
    y_concept_2 = gr.State("")

    avg_diff_x_1 = gr.State()
    avg_diff_x_2 = gr.State()
    avg_diff_y_1 = gr.State()
    avg_diff_y_2 = gr.State()

    do_inversion = gr.State()
    init_latents = gr.State()
    zs = gr.State()
    
    with gr.Tab("text2image"):
        with gr.Row():
            with gr.Column():
                slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                prompt = gr.Textbox(label="Prompt")
                submit = gr.Button("find directions")
            with gr.Column():
                with gr.Group(elem_id="group"):
                  x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False)
                  y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False)
                  output_image = gr.Image(elem_id="image_out")
                with gr.Row():
                    generate_butt = gr.Button("generate")
        
        with gr.Accordion(label="advanced options", open=False):
            iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400)
            steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
            guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
            seed  = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
        
       
    with gr.Tab(label="image2image"):
        with gr.Row():
            with gr.Column():
                image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
                slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="")
                prompt_a = gr.Textbox(label="Prompt")
                submit_a = gr.Button("Submit")
            with gr.Column():
                with gr.Group(elem_id="group"):
                  x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
                  y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
                  output_image_a = gr.Image(elem_id="image_out")
                with gr.Row():
                    generate_butt_a = gr.Button("generate")
        
        with gr.Accordion(label="advanced options", open=False):
            iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
            steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
            guidance_scale_a = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
            controlnet_conditioning_scale = gr.Slider(
                    label="controlnet conditioning scale",
                    minimum=0.5,
                    maximum=5.0,
                    step=0.1,
                    value=0.7,
                )
            ip_adapter_scale = gr.Slider(
                    label="ip adapter scale",
                    minimum=0.5,
                    maximum=5.0,
                    step=0.1,
                    value=0.8,
                )
            seed_a  = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)

    with gr.Tab(label="inversion"):
        with gr.Row():
            with gr.Column():
                image_inv = gr.Image(height=512, width=512)
                slider_x_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                slider_y_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
                prompt_inv = gr.Textbox(label="Prompt")
                img2img_type_inv = gr.Radio(["inversion"], label="",value="inversion", info="", visible=False)
                submit_inv = gr.Button("Submit")
            with gr.Column():
                with gr.Group(elem_id="group"):
                  x_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
                  y_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
                  output_image_inv = gr.Image(elem_id="image_out")
                with gr.Row():
                    generate_butt_inv = gr.Button("generate")
        
        with gr.Accordion(label="advanced options", open=False):
            iterations_inv = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
            steps_inv = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
            guidance_scale_inv = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
            # edit_threshold=None, edit_guidance_scale = None,
            #  init_latents=None, zs=None
            edit_threshold = gr.Slider(
                    label="edit threshold",
                    minimum=0.01,
                    maximum=0.99,
                    step=0.1,
                    value=0.3,
                )
            edit_guidance_scale = gr.Slider(
                    label="edit guidance scale",
                    minimum=0,
                    maximum=20,
                    step=0.25,
                    value=5,
                )
            seed_inv = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
        
    submit.click(fn=generate,
                     inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
                     outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])

    image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=invert, inputs=[image_inv], outputs=[init_latents,zs])
    submit_inv.click(fn=generate,
                     inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs],
                     outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv])
    
    generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
    generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
    generate_butt_inv.click(fn=update_scales, inputs=[x_inv,y_inv, prompt_inv, seed_inv, steps_inv, guidance_scale_inv, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], outputs=[output_image_inv])
    #x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
    #y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
    submit_a.click(fn=generate,
                     inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
                     outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
    #x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
    #y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])

        
if __name__ == "__main__":
    demo.launch()